
Sébastien Aperghis-Tramoni
Philippe Bruhat
Damien Krotkine
Jérôme Quelin

Pe
rl

m
od

er
ne

LE
 G

U
ID

E
 D

E
 S

U
R

V
IE

S. Aperghis-Tramoni
P. Bruhat

D. Krotkine
J. Quelin

LE GUIDE DE SURVIE

Perl moderne
Ce Guide de survie est l’outil indispensable pour programmer
en Perl aujourd’hui. Il présente les dernières évolutions de
Perl 5 par ses versions 5.10 et 5.12, fortement empreintes
de la version 6 en cours de fi nalisation.

CONCIS ET MANIABLE
Facile à transporter, facile à utiliser — fi nis les livres
encombrants !

PRATIQUE ET FONCTIONNEL
Plus de 350 séquences de code pour répondre aux
situations les plus courantes et exploiter effi cacement
les fonctions et les bibliothèques d’un langage qui s’est
radicalement modernisé.

Sébastien Aperghis-Tramoni, Philippe Bruhat, Damien
Krotkine et Jérôme Quelin sont activement impliqués dans la
communauté Perl française, via l’association Les Mongueurs
de Perl, qui organise notamment « Les Journées Perl ». Ils
sont les auteurs de nombreux modules Perl.

Niveau : Intermédiaire / Avancé
Catégorie : Programmation

LE GUIDE DE SURVIE

Perl
moderne
L’ESSENTIEL DES PRATIQUES ACTUELLES

ISBN : 978-2-7440-2419-1

2419 1010 22 €Pearson Education France
47 bis rue des Vinaigriers
75010 Paris
Tél. : 01 72 74 90 00
Fax : 01 42 05 22 17
www.pearson.fr

2419- GS Perl Moderne.indd 12419- GS Perl Moderne.indd 1 05/10/10 11:5505/10/10 11:55

Perl
moderne

Sébastien Aperghis-Tramoni
Damien Krotkine
Jérôme Quelin

avec la contribution
de Philippe Bruhat

Garde-perl Page I Jeudi, 30. septembre 2010 8:43 08

Pearson Education France a apporté le plus grand soin à la réalisation de ce livre
afin de vous fournir une information complète et fiable. Cependant, Pearson
Education France n’assume de responsabilités, ni pour son utilisation, ni pour les
contrefaçons de brevets ou atteintes aux droits de tierces personnes qui pourraient
résulter de cette utilisation.

Les exemples ou les programmes présents dans cet ouvrage sont fournis pour illus-
trer les descriptions théoriques. Ils ne sont en aucun cas destinés à une utilisation
commerciale ou professionnelle.

Pearson Education France ne pourra en aucun cas être tenu pour responsable des
préjudices ou dommages de quelque nature que ce soit pouvant résulter de
l’utilisation de ces exemples ou programmes.

Tous les noms de produits ou autres marques cités dans ce livre sont des marques
déposées par leurs propriétaires respectifs.

Aucune représentation ou reproduction, même partielle, autre que celles prévues
à l’article L. 122-5 2˚ et 3˚ a) du code de la propriété intellectuelle ne peut être
faite sans l’autorisation expresse de Pearson Education France ou, le cas échéant,
sans le respect des modalités prévues à l’article L. 122-10 dudit code.

Publié par Pearson Education France
47 bis, rue des Vinaigriers
75010 PARIS
Tél : 01 72 74 90 00
www.pearson.fr

Réalisation PAO : euklides.fr
Collaboration éditoriale : Jean-Philippe Moreux

ISBN : 978-2-7440-4164-8

Copyright © 2010 Pearson Education France

Tous droits réservés

Garde-perl Page II Jeudi, 30. septembre 2010 8:43 08

i

i

“perl” — 2010/9/30 — 13:10 — page III — #1
i

i

i

i

i

i

Table des matières

Les auteurs XVI

Avant-propos XVII

1 Démarrer avec Perl 1

Vérifier la version de Perl 1

Exécuter les exemples 2

Exécuter perl sur un fichier 3

Éditer les programmes 4

Installer Perl sous Linux 5

Installer Perl sous Windows 6

Installer Perl sous Mac OS X 6

2 Installer un module Perl 7

Chercher un module avec cpan 9

Installer un module avec cpan 10

Mettre à jour les modules 10

Installer un module avec cpanm 11

Partie I – Langage et structures
de données

3 Éléments du langage 13

Exécuter perl en ligne de commande 13

Exécuter perl sur un fichier 15

Créer un fichier exécutable 15

Exécuter en mode déboggage 15

Règles générales du langage 17

Les types de données 18

Initialiser une variable scalaire 19

III

i

i

“perl” — 2010/9/30 — 13:10 — page IV — #2
i

i

i

i

i

i

Perl moderne

Déclarer une variable scalaire 19

Afficher un scalaire 20

Créer une chaîne de caractères 20

La notion de contexte 22

Travailler sur les nombres 24

Travailler sur les chaînes 25

Tester si un scalaire est défini 26

Déclarer une fonction 26

Passer des paramètres 27

Renvoyer une valeur de retour 28

Utiliser des variables dans une fonction 29

Les opérateurs de test 29

Tester une expression 31

Effectuer une opération conditionnelle 32

Effectuer une opération si un test est faux 33

Tester négativement une expression 34

Effectuer des tests avec and et or 34

Boucler sur les éléments d’une liste 35

Boucler tant qu’un test est vrai 36

Créer une référence sur scalaire 37

Déréférencer une référence sur scalaire 38

Accéder à une variable référencée 38

Passer un paramètre par référence 39

Utiliser des références sur fonctions 40

Récupérer les arguments de la ligne de commande 41

Exécuter des commandes système 42

Terminer abruptement un programme 42

Créer un module Perl 43

Utiliser un module Perl 44

4 Structures de données 47

Créer une liste 47

Créer une liste avec un intervalle 48

Créer une liste de mots 49

IV

i

i

“perl” — 2010/9/30 — 13:10 — page V — #3
i

i

i

i

i

i

Table des matières

Créeruntableauàunedimension 50

Accéder aux éléments d’un tableau 51
Affecterunélémentd’untableau 52

Obtenir le premier élément d’un tableau 53

Obtenir le dernier élément d’un tableau 53

Obtenir la taille d’un tableau 54

Assigner un élément en dehors du tableau 55

Tester les éléments d’un tableau 55

Manipuler la fin d’un tableau 56

Manipuler le début d’un tableau 58

Manipuler le milieu d’un tableau 58

Supprimer un élément d’un tableau 60

Inverser une liste ou un tableau 60
Aplatir listes et tableaux 61

Manipuler une tranche de tableau 62

Boucler sur les éléments d’un tableau 65

Créer un tableau à plusieurs dimensions 67

Référencer un tableau 67

Déréférencer un tableau 68

Créer des références dans un tableau 69

Accéder à un tableau de tableaux 70

Modifier un tableau de tableaux 71

Dumper un tableau 71

Utiliser les tables de hachage 74
Créer une table de hachage 75

Accéder aux éléments d’une table de hachage 76

Supprimer un élément d’une table de hachage 78

Tester l’existence et la définition d’un élément 78

Utiliser des tranches de hashs 79

Obtenir la liste des clés 80

Obtenir la liste des valeurs d’une table de hachage 81

Dumper un hash 82

Boucler sur un hash avec foreach 82

Boucler sur un hash avec each 83

V

i

i

“perl” — 2010/9/30 — 13:10 — page VI — #4
i

i

i

i

i

i

Perl moderne

Référencer un hash 84

Déréférencer un hash 84

Créer des structures hybrides 85

Transformer tous les éléments d’un tableau ou d’une
liste avec map 86

Filtrer un tableau ou une liste avec grep 88

Renvoyer le premier élément d’une liste avec List::Util 89

Trouver le plus grand élément avec List::Util 90

Trouver le plus petit élément avec List::Util 90

Réduire une liste avec List::Util 91

Mélanger une liste avec List::Util 92

Faire la somme d’une liste avec List::Util 92

Savoir si un élément vérifie un test avec
List::MoreUtils 92

Savoir si aucun élément ne vérifie un test
avec List::MoreUtils 93

Appliquer du code sur deux tableaux avec
List::MoreUtils 93

Tricoter un tableau avec List::MoreUtils 93

Enlever les doublons avec List::MoreUtils 94

5 Expressions régulières 95

Effectuer une recherche 96

Rechercher et remplacer 97

Stocker une expression régulière 98

Rechercher sans prendre en compte la casse 99

Rechercher dans une chaîne multiligne 100

Rechercher dans une chaîne simple 100

Neutraliser les caractères espace 101

Contrôler la recherche globale de correspondances 101

Distinguer caractères normaux et métacaractères 102

Établir une correspondance parmi plusieurs caractères 104

Ancrer une expression régulière en début de ligne 106

Ancrer une expression régulière en fin de ligne 107

Utiliser une ancre de début de chaîne 108

VI

i

i

“perl” — 2010/9/30 — 13:10 — page VII — #5
i

i

i

i

i

i

Table des matières

Utiliser une ancre de fin de chaîne 108

Utiliser une ancre de frontière de mot 108

Utiliser une ancre par préfixe de recherche 109

Utiliser une ancre de correspondance globale 109

Quantifieur * 111

Quantifieur + 112

Quantifieur ? 112

Quantifieur {n} 113

Quantifieur {n,m} 113

Quantifieurs non avides 114

Quantifieurs possessifs 115

Capturer du texte avec les groupes capturants 116

Grouper sans capturer avec les groupes non capturants 119

Définir des alternatives 121

Découper une chaîne avec split 122

Utiliser Regexp::Common 124

Utiliser Regexp::Assemble 126

Utiliser Text::Match::FastAlternatives 128

Utiliser YAPE::Regex::Explain 128

Partie II – Objet moderne

6 Concepts objet en Perl 131

Créer un objet 132

Connaître la classe d’un objet 132

Appeler une méthode 133

Définir une méthode 133

Définir un constructeur 135

7 Moose 137

Déclarer une classe 137

Déclarer un attribut 138

Accéder aux objets 140

Modifier le nom des accesseurs 141

VII

i

i

“perl” — 2010/9/30 — 13:10 — page VIII — #6
i

i

i

i

i

i

Perl moderne

Méthodes de prédicat et de suppression 143

Rendre un attribut obligatoire 144

Vérifier le type d’un attribut 145

Donner une valeur par défaut 145

Construire un attribut 147

Rendre un attribut paresseux 148

Spécifier un déclencheur 150

Déréférencer un attribut 151

Affaiblir un attribut référence 152

Chaîner les attributs 153

Simplifier les déclarations d’attributs 153

Étendre une classe parente 154

Surcharger une méthode 155

Modifier des attributs hérités 156

Créer un rôle 156

Consommer un rôle 157

Requérir une méthode 158

Construire et détruire des objets 159

Modifier les paramètres du constructeur 159

Interagir avec un objet nouvellement créé 160

Interagir lors de la destruction d’un objet 161

8 Le typage dans Moose 163

Utiliser les types de base 163

Créer une bibliothèque de types personnalisés 165

Définir un sous-type 165

Définir un nouveau type 166

Définir une énumération 167

Définir une union de types 167

Transtyper une valeur 168

9 Moose et les méthodes 171

Modifier des méthodes 171

Intercaler un prétraitement 172

VIII

i

i

“perl” — 2010/9/30 — 13:10 — page IX — #7
i

i

i

i

i

i

Table des matières

Intercaler un post-traitement 173

S’intercaler autour d’une méthode 174

Modifier plusieurs méthodes 175

Appeler la méthode parente 176

Augmenter une méthode 177

Déléguer une méthode à un attribut 179

Déléguer des méthodes à une structure Perl 180

Partie III – Manipulation de données

10 Fichiers et répertoires 183

Ouvrir des fichiers 183

Utiliser un descripteur de fichier en lecture 185

Utiliser un descripteur de fichier en écriture 187

Fermer un descripteur de fichier 188

Manipuler des chemins avec Path::Class 189

Pointer un fichier ou un répertoire 190

Pointer un objet relatif 191

Pointer un objet parent 191

Obtenir des informations 192

Créer ou supprimer un répertoire 193

Lister un répertoire 193

Ouvrir un fichier 194

Supprimer un fichier 196

Parcourir un répertoire récursivement 196

Créer un fichier temporaire 197

Créer un répertoire temporaire 198

Identifier les répertoires personnels 199

Connaître le répertoire courant 201

Changer de répertoire 201

11 Bases de données SQL 203

Se connecter 205

Tester la connexion 208

IX

i

i

“perl” — 2010/9/30 — 13:10 — page X — #8
i

i

i

i

i

i

Perl moderne

Se déconnecter 209

Préparer une requête SQL 209

Lier une requête SQL 211

Exécuter une requête SQL 211

Récupérer les données de retour d’une requête SQL 212

Combiner les étapes d’exécution d’une requête SQL 214

Gérer les erreurs 216

Tracer l’exécution 217

Profiler l’exécution 219

12 Abstraction du SQL, ORM et bases non-SQL 223

Utiliser Data::Phrasebook::SQL 223

ORM avec DBIx::Class 232

Créer un schéma DBIx::Class 234

Utiliser un schéma DBIx::Class 237

Stocker des objets avec KiokuDB 238

Se connecter à une base KiokuDB 239

Stocker et récupérer des objets 240

Administrer une base KiokuDB 242

Utiliser une base orientée paires de clé-valeur 243

Utiliser une base orientée documents 244

13 Dates et heures 247

Utiliser le module Date::Parse 249

Lire une date avec Date::Parse 250

Interpréter une date avec Date::Parse 250

Changer la langue avec Date::Language 251

Gérer les intervalles de temps avec Time::Duration 252

Interpréter une durée avec Time::Duration 253

Obtenir la durée à partir de maintenant 254

Réduire l’affichage 254

Changer la langue avec Time::Duration::fr 255

Utiliser les modules DateTime 256

Construire une instance DateTime arbitraire 257

Choisir un fuseau horaire 258

X

i

i

“perl” — 2010/9/30 — 13:10 — page XI — #9
i

i

i

i

i

i

Table des matières

Obtenir l’instant présent 258

Obtenir la date du jour 259

Obtenir l’année 259

Obtenir le mois 260

Obtenir le nom du mois 260

Obtenir le jour du mois 260

Obtenir le jour de la semaine 260

Obtenir le nom du jour 261

Obtenir l’heure 261

Obtenir les minutes 261

Obtenir les secondes 261

Obtenir les nanosecondes 262

Obtenir des durées de temps 263

Décaler une date dans le futur 264

Ajouter une durée 265

Décaler une date dans le passé 265

Soustraire une durée 266

Calculer un intervalle de temps 267

Générer une représentation textuelle d’une date 268

Interpréter une date 270

Partie IV – Formats structurés

14 XML 273

Charger un document XML avec XML::LibXML 275

Parcourir un arbre DOM 277

Utiliser XPath 280

Utiliser SAX 281

Créer un objet XML::Twig 285

Charger du contenu XML avec XML::Twig 286

Créer des handlers avec XML::Twig 287

Produire le contenu XML de sortie 289

Ignorer le contenu XML de sortie 289

XI

i

i

“perl” — 2010/9/30 — 13:10 — page XII — #10
i

i

i

i

i

i

Perl moderne

Accéder au nom d’un élément 290

Changer le nom d’un élément 291

Obtenir le contenu texte d’un élément 292

Changer le contenu XML d’un élément 292

Interagir avec les attributs d’un élément 293

Interagir avec les éléments environnants 294

Effectuer un copier-coller 297

15 Sérialisation de données 301

Sérialiser avec Data::Dumper 301

Sérialiser avec Storable 307

Sérialiser avec JSON 310

Sérialiser avec YAML 316

16 Fichiers de configuration 319

Fichiers .INI 320

Partie V – Programmation événementielle

17 Principes généraux de POE 325

POE 326

Événements 327

Sessions 328

Le noyau POE 329

18 POE en pratique 331

Créer une session POE 331

Envoyer un événement 332

Passer des paramètres 333

Utiliser des variables privées 335

Communiquer avec une autre session 336

Envoyer un message différé 339

Envoyer un message à l’heure dite 340

XII

i

i

“perl” — 2010/9/30 — 13:10 — page XIII — #11
i

i

i

i

i

i

Table des matières

Terminer le programme 341

Couper les longs traitements 341

Bannir les entrées-sorties bloquantes 345

Composants de haut niveau 346

Boîte à outils de niveau intermédiaire 347

Fonctions de bas niveau POE 348

Exemple d’utilisation : le composant DBI 348

19 POE distribué 357

Créer un serveur IKC 358

Créer un client IKC 359

Partie VI – Web

20 Analyse de documents HTML 363

Analyser avec les expressions régulières 364

Utiliser l’analyseur événementiel HTML::Parser 365

Instancier un analyseur HTML::Parser 365

Créer un gestionnaire d’événements 366

Lancer l’analyse HTML 368

Terminer l’analyse du contenu 369

Détecter un nouveau document 369

Détecter une balise 370

Détecter un commentaire 370

Détecter un début de balise 371

Détecter du texte brut 371

Détecter la fin d’une balise 372

Détecter la fin du document 372

Détecter des instructions de traitement 372

Capturer les autres événements 373

Extraire du texte d’un document 373

Produire une table des matières 374

Créer une instance HTML::TokeParser 377

XIII

i

i

“perl” — 2010/9/30 — 13:10 — page XIV — #12
i

i

i

i

i

i

Perl moderne

Récupérer des tokens 378

Obtenir des balises 379

Obtenir du texte 380

Obtenir du texte nettoyé 381

Extraire le texte d’un document avec
HTML::Parser 381

Produire une table des matières avec HTML::Parser 382

Analyse par arbre avec HTML::TreeBuilder 383

Créer un arbre 384

Rechercher un élément 385

Extraire du texte d’un document avec
HTML::TreeBuilder 387

Produire une table des matières avec HTML::TreeBuilder 387

Extraire le titre d’un document avec HTML::TreeBuilder 388

21 HTTP et le Web 389

Adresses 390

Messages 391

Requêtes 392

Réponses 393

22 LWP 395

Utiliser LWP::Simple 395

Faire une requête GET sur une URL 395

Enregistrer le contenu de la réponse 396

Faire une requête HEAD sur une URL 396

Utiliser LWP::UserAgent 397

Créer un agent LWP::UserAgent 397

Gérer les réponses 398

Faire une requête GET sur une URL avec LWP::UserAgent 399

Enregistrer le contenu de la réponse 400

Faire une requête HEAD sur une URL avec
LWP::UserAgent 401

Faire une requête POST sur une URL avec
LWP::UserAgent 402

XIV

i

i

“perl” — 2010/9/30 — 13:10 — page XV — #13
i

i

i

i

i

i

Table des matières

Envoyer des requêtes 403
Différences entre LWP::UserAgent et un « vrai »
navigateur 403

23 Navigation complexe 407
Traiter les erreurs 407

Authentifier 408

Gérer les cookies 410

Créer un objet HTML::Form 411
Sélectionner et modifier des champs de formulaire 412

Valider un formulaire 413

24 WWW::Mechanize 415
Créer un objet WWW::Mechanize 415

Lancer une requête GET 417

Lancer une requête POST 417
Revenir en arrière 417

Recharger une page 418

Suivre des liens 418

Traiter les erreurs 420
Authentifier 420

Gérer les cookies 420

Gérer les formulaires 421
Sélectionner un formulaire par son rang 421

Sélectionner un formulaire par son nom 421

Sélectionner un formulaire par son identifiant 422
Sélectionner un formulaire par ses champs 422

Remplir le formulaire sélectionné 422

Valider le formulaire sélectionné 423

Sélectionner, remplir et valider un formulaire 423
Exemple d’application 424

A Tableau récapitulatif des opérateurs 429

Index 431

XV

i

i

“perl” — 2010/9/30 — 13:10 — page XVI — #14
i

i

i

i

i

i

Les auteurs

Les auteurs, activement impliqués dans la communauté
Perl française, sont membres de l’association Les mongueurs
de Perl (http://www.mongueurs.net).

Sébastien Aperghis-Tramoni travaille actuellement
chez Orange France comme ingénieur système et déve-
loppeur Perl. Utilisateur de ce langage depuis 15 ans, il
contribue régulièrement à Perl, au CPAN (une quaran-
taine de modules), et à d’autres logiciels libres. Il participe
à de nombreuses conférences en France et en Europe de-
puis 2003. Il est l’auteur de plusieurs articles parus dans
GNU/Linux Magazine France.

Damien Krotkine, ingénieur, a travaillé notamment chez
Mandriva (éditeur Linux), et Venda (leader eCommerce).
Auteur de sept modules CPAN, il est également coau-
teur de Linux – le guide complet (Micro Application), et au-
teur d’articles dans GNU/Linux Magazine France. Ancien
développeur Gentoo Linux et ancien contributeur Man-
driva, il participe régulièrement aux conférences French
Perl Workshop et OSDC.fr.

Jérôme Quelin utilise le langage Perl depuis 1995. Il
est l’auteur d’une quarantaine de modules sur CPAN et
contribue à de nombreux autres modules et projets open-
source. Il maintient aussi un certain nombre de packages
pour Mandriva (et Mageia maintenant).

Philippe Bruhat vit à Lyon et travaille pour Booking.
com. Utilisateur de Perl depuis 1998, il est l’auteur de
vingt-cinq modules sur CPAN et d’articles dans GNU/Li-
nux Magazine France ; il est aussi cotraducteur de Program-
ming Perl et Perl Best Practices, contributeur à Perl Hacks et
relecteur pour O’Reilly. Il a participé à (et organisé) de
nombreuses conférences Perl depuis 2000.

i

i

“perl” — 2010/9/30 — 13:10 — page XVII — #15
i

i

i

i

i

i

Avant-propos

Le langage Perl est en plein essor. Plus de vingt ans ont
passé depuis sa création, et pourtant il a su s’adapter pour
rester un langage pertinent.

Car depuis mi-2008, c’est une petite révolution de fond
qui a lieu. S’inspirant des concepts de la version 6 à venir,
elle même s’inspirant d’autres langages, Perl 5 s’est radica-
lement modernisé.

Tout d’abord, depuis la version 5.10, l’interpréteur perl
est mis à jour régulièrement, avec une version majeure
tous les ans apportant de nouvelles fonctionnalités et des
mises à jour mineures tous les trimestres. Ce cycle régu-
lier est garant d’un langage toujours stable et à jour des
dernières nouveautés.

Ensuite, le langage lui-même a subi de profondes modifi-
cations, avec notamment un nouveau système de pro-
grammation orientée objet, Moose, et de nouveaux mots-
clés.

Le dépôt de modules CPAN voit également son rythme
de croissance s’accélérer, malgré sa taille déjà confortable
(21 000 distributions et 86 000 modules). Aucun autre lan-
gage dynamique ne possède autant de bibliothèques ex-
ternes centralisées.

Enfin, un nombre croissant de logiciels Perl de haut ni-
veau et utilisant les dernières technologies voient le jour,
dans tous les secteurs. Dans le domaine du Web notam-
ment, Perl amorce son retour sur le devant de la scène,
avec des frameworks complets comme Catalyst, ou plus lé-
gers et « agiles » comme Dancer.

i

i

“perl” — 2010/9/30 — 13:10 — page XVIII — #16
i

i

i

i

i

i

Perl moderne

Bien sûr, toutes ces évolutions changent la manière dont
Perl est utilisé : un programme écrit en l’an 2000, même
s’il reste compatible, ne ressemble plus du tout au même
programme écrit au goût du jour, en 2010. C’est donc
tout l’intérêt de ce livre, véritable guide de survie dans le
monde Perl contemporain : les auteurs, fortement impli-
qués dans l’évolution de ce langage, vous apprennent à
l’utiliser dans ses dimensions les plus actuelles.

Un monde qui vous étonnera par sa richesse et ses possi-
bilités. . . mais surtout par son incomparable modernité !

XVIII

i

i

“perl” — 2010/9/30 — 13:10 — page 1 — #17
i

i

i

i

i

i

1
Démarrer
avec Perl

Cet ouvrage contient un nombre important d’exemples et
d’extraits de code. La plupart constituent des petits pro-
grammes à part entière, qu’il est possible d’exécuter di-
rectement, d’autres sont des extraits non fonctionnels tels
quels, mais qui sont suffisamment simples pour être inté-
grés dans des programmes existants.

Ce petit chapitre a pour but de démarrer rapidement avec
cet ouvrage, pour pouvoir exécuter les exemples de code
immédiatement et expérimenter le langage.

En règle générale, Perl est disponible sous Linux et Mac
OS X. Sous Windows toutefois, il faut commencer par
l’installer.

Pour des détails quant à l’installation de Perl, voir page 5.

Vérifier la version de Perl
Il est très important de s’assurer de disposer d’une version
récente de Perl. En effet, cet ouvrage se focalise sur les
versions modernes de Perl, c’est-à-dire dont la version est
supérieure ou égale à 5.10.

i

i

“perl” — 2010/9/30 — 13:10 — page 2 — #18
i

i

i

i

i

i

CHAPITRE 1 Démarrer avec Perl

perl -v

Cette commande renvoie quatre paragraphes de descrip-
tion et d’information sur Perl. La première ligne ressemble
à cela :

This is perl, v5.10.0 built for darwin-2level

Elle indique qu’il s’agit de la version 5.10 de Perl. Si la
version était inférieure à 5.10, il faudrait mettre à jour
Perl (pour installer ou mettre à jour Perl, voir page 5).

Exécuter les exemples
Le moyen le plus simple de tester les concepts décrits dans
cet ouvrage est d’exécuter les exemples de code. Pour
cela, il est conseillé de les reproduire dans un fichier, puis
d’utiliser l’interpréteur Perl en lui donnant le fichier en
argument.

La première étape consiste à créer un fichier (qui sera
nommé test.pl1). Ce fichier doit contenir les lignes sui-
vantes, au début :

use strict ;

use warnings ;

use 5.010;

Ces lignes précisent à l’interpréteur Perl qu’il doit passer
en mode strict et activer tous les avertissements, et qu’il
requiert une version supérieure ou égale à 5.10, dont il
active toutes les fonctionnalités supplémentaires.

En dessous de ces lignes, le code Perl à proprement parler
peut enfin être inséré.

1. L’extension de fichier .pl est standard pour les programmes autonomes
Perl, également appelés scripts. Les modules Perl, qui doivent être char-
gés, sont stockés dans des fichiers avec l’extension .pm.

2

i

i

“perl” — 2010/9/30 — 13:10 — page 3 — #19
i

i

i

i

i

i

Exécuter perl sur un fichier

Voici un exemple d’un tel fichier, pour exécuter l’extrait
de code sur foreach (voir page 66) :

fichier test . pl

use strict ;

use warnings ;

use 5.010;

tout l ’ alphabet

my @alphabet = (’a ’ .. ’z ’);

my $count = 0;

foreach my $lettre (@alphabet) {

say ’la ’ . ++ $count .

’e lettre de l\’ alphabet est : ’ .

$lettre ;

}

Exécuter perl sur un fichier
Il ne reste plus qu’à lancer perl en lui passant le fichier
test.pl en argument :

perl test.pl

Et la console affiche le résultat de l’exécution, dans ce cas
précis :

la 1e lettre de l’alphabet est : a

la 2e lettre de l’alphabet est : b

la 3e lettre de l’alphabet est : c

...

la 25e lettre de l’alphabet est : y

la 26e lettre de l’alphabet est : z

3

i

i

“perl” — 2010/9/30 — 13:10 — page 4 — #20
i

i

i

i

i

i

CHAPITRE 1 Démarrer avec Perl

Attention

Il est très important d’ajouter les trois lignes :

use strict ;

use warnings ;

use 5.010;

au début du fichier. Faute de quoi l’interpréteur ne prendra pas
en compte les nouvelles fonctionnalités de Perl 5.10, notamment
la fonction say().

Éditer les programmes
Pour éditer les programmes Perl, il est nécessaire d’utiliser
un éditeur de texte puissant et si possible orienté program-
mation, qui prenne en charge les spécificités de Perl.

L’environnement de développement intégré (IDE) Eclipse
peut être utilisé avec le greffon (plugin) EPIC. Le site web
www.epic-ide.org contient les instructions (très simples)
qui permettent d’installer EPIC dans Eclipse. Bien sûr, le
prérequis est d’avoir une version récente d’Eclipse, qui
peut être téléchargée sur www.eclipse.org. Cette solu-
tion EPIC-Eclipse est multi-plateforme, et fonctionne très
bien sous Linux, Windows ou Mac OS X.

Padre (http://padre.perlide.org) est un nouvel IDE écrit
en Perl, par des développeurs Perl, pour les développeurs
Perl. En très peu de temps, cet IDE a acquis une re-
nommée certaine, et c’est probablement l’IDE Perl de de-
main. Il fonctionne sous Windows, Linux, et Mac OS X2.
Pour Windows, il y a même un paquetage qui intègre
Strawberry Perl et Padre en une seule installation, qui
permet d’obtenir un environnement Perl opérationnel en
quelques minutes et sans aucune configuration.

2. Même si l’installation sur ce système est moins aisée que sur les deux
premiers.

4

i

i

“perl” — 2010/9/30 — 13:10 — page 5 — #21
i

i

i

i

i

i

Installer Perl sous Linux

Pour les utilisateurs qui n’utilisent pas d’IDE, voici une
petite liste très classique de recommandations :

● Sous Unix, Emacs et vim sont incontournables. D’autres
éditeurs de texte (comme SciTE) sont également cou-
ramment utilisés.

● Sous Windows, notepad++ et Editplus sont des éditeurs
qui proposent une prise en charge basique de Perl. Vim
est également disponible sous forme graphique, gvim.

● Sous Mac OS X, il y a une version Emacs de très bonne
qualité, ainsi que des éditeurs spécifiques à cette plate-
forme, comme TextMate.

Installer Perl sous Linux
Pratiquement toutes les distributions Linux sont fournies
avec Perl en standard. Toutes les distributions majeures
(Ubuntu, Debian, Red Hat, Fedora, Mandriva, Open-
SuSE. . .) permettent d’utiliser Perl directement sans avoir
à installer quoi que ce soit.

Cependant il convient de vérifier la version installée, avec :

perl -v

qui permet de renvoyer des informations sur la version
de l’interpréteur perl, dont la version doit être au moins
5.10. Si ce n’est pas le cas, il convient de mettre à jour
Perl.

Pour mettre à jour Perl sous Linux, il suffit d’utiliser le
gestionnaire de paquetage livré avec la distribution.

Ubuntu / Debian

aptitude update && aptitude install perl5

Mandriva

urpmi perl

Red Hat / Fedora

yum install perl

5

i

i

“perl” — 2010/9/30 — 13:10 — page 6 — #22
i

i

i

i

i

i

CHAPITRE 1 Démarrer avec Perl

Installer Perl sous Windows
Perl n’est pas livré en standard avec Windows. Il existe
plusieurs distribution Perl pour Windows, mais la meilleure
à ce jour est Strawberry Perl. En se connectant sur
http://strawberryperl.com, il est aisé de télécharger
la dernière version. Strawberry Perl s’installe très facile-
ment3, il possède un programme d’installation MSI qui
guide l’utilisateur tout au long de la configuration.

Une fois installé, le répertoire contenant l’interpréteur perl
est ajouté à la variable d’environnement PATH, et perl.exe
est normalement utilisable depuis n’importe quel réper-
toire dans la console Windows. Il peut également être
utilisé à travers des IDE, comme Padre ou Eclipse.

Installer Perl sous Mac OS X
Perl est fourni en standard avec Mac OS X. Cependant, il
est préférable de mettre à jour Perl. Pour cela, la solution
la plus simple est d’utiliser le projet MacPorts (http://

www.macports.org), qui est un système de paquetage
similaire à ceux disponibles sous Linux.

Il faut tout d’abord installer le logiciel MacPorts sur le
Mac, puis mettre à jour Perl. MacPorts est une grande
bibliothèque de logiciel, et contient plusieurs paquetages
(ports dans la dénomination MacPorts) de Perl : perl5,
perl5.8, perl5.10, perl5.12, et probablement d’autres plus
à jour. Il est conseillé d’installer la dernière version, ou
perl5.12 au minimum. Voici la ligne de commande à en-
trer pour installer perl5.12 :

port install perl5.12

L’interpréteur pourra être lancé de /opt/local/bin/perl.

3. Par défaut sur C:/strawberry, configurable pendant l’installation.

6

i

i

“perl” — 2010/9/30 — 13:10 — page 7 — #23
i

i

i

i

i

i

2
Installer

un module Perl

CPAN (Comprehensive Perl Archive Network) est la plus vaste
bibliothèque logicielle Perl. En pratique, c’est un ensemble
de sites web qui donnent accès en ligne à la formidable
bibliothèque des modules Perl – ainsi qu’à leur documen-
tation –, modules qui permettent d’élargir les possibilités
du langage Perl.

Attention

Il ne faut pas confondre :

● CPAN : le nom de la bibliothèque logicielle mise à disposition
du public sur Internet ;

● cpan : le nom du programme à lancer en ligne de commande
pour pouvoir chercher et installer des modules depuis CPAN.

De même, il ne faut pas confondre :

● Perl (avec une majuscule) : le langage de programmation ;

● perl (sans majuscule) : le nom de l’interpréteur perl, c’est-à-
dire le programme qui exécute les programmes.

i

i

“perl” — 2010/9/30 — 13:10 — page 8 — #24
i

i

i

i

i

i

CHAPITRE 2 Installer un module Perl

CPAN

CPAN est un élément capital du succès de Perl. Aucun autre
langage ne possède une telle bibliothèque, vaste, bien organi-
sée, bien gérée, compatible, et soutenue par une communauté
aussi performante.

En particulier, le site Search CPAN (http://search.cpan.org)
est la pierre angulaire pour trouver des modules, accéder à

leur documentation en ligne, ainsi qu’à des commentaires et

ajouts faits à la documentation, au code source des modules,

aux archives des distributions, aux tickets ouverts, aux ap-

préciations des utilisateurs, aux rapports des tests automa-

tiques (très utiles pour savoir sur quelles versions de Perl et

sur quelles plateformes le module fonctionne) et d’autres ou-

tils annexes encore.

Installer un module CPAN est une opération qui consiste
à trouver le module recherché dans la bibliothèque CPAN,
le télécharger, le configurer, trouver s’il dépend d’autres
modules non installés, et enfin à installer le module et ses
éventuelles dépendances.

Heureusement, tout ce processus est très largement auto-
matisé grâce à cpan. Ce programme se lance simplement
depuis la ligne de commande :

cpan

Il est également possible d’exécuter cette ligne :

perl -MCPAN -e shell

Attention

Sous Linux et Mac OS X, il sera sans doute indispensable d’avoir
les droits d’administrateur pour pouvoir installer un module Perl.

8

i

i

“perl” — 2010/9/30 — 13:10 — page 9 — #25
i

i

i

i

i

i

Chercher un module avec cpan

Il convient donc de passer en mode root avant de lancer cpan, ou
bien d’utiliser la commande sudo.

Sous Windows, avec Strawberry Perl, cpan est automati-
quement configuré. Cependant, sous Linux et Mac OS X,
au premier lancement de cpan, plusieurs questions sont
posées à l’utilisateur. Une réponse par défaut est toujours
proposée, de sorte que la configuration initiale est très
simple.

Une fois lancée, la commande cpan donne accès à un en-
vironnement de commande très simple. Les commandes
sont entrées sur une ligne, et validées avec la touche En-
trée.

Il est facile d’avoir la liste des commandes et leurs options
en tapant help :

cpan[1]> help

Voici cependant les commandes les plus utilisées.

Chercher un module avec cpan

i /requete/

La commande cpan i permet de rechercher le nom exact
d’un module1 Perl en partant d’un fragment de son nom
ou d’un de ses fichiers. Par exemple, il est possible d’avoir
une liste de tous les modules Perl qui mentionnent XML
en tapant :

cpan[1]> i /XML/

1. Ou d’un auteur, d’un bundle, d’une distribution.

9

i

i

“perl” — 2010/9/30 — 13:10 — page 10 — #26
i

i

i

i

i

i

CHAPITRE 2 Installer un module Perl

Installer un module avec cpan

install Un::Module

Une fois le nom du module trouvé, il suffit d’utiliser la
commande install pour l’installer :

install Modern::Perl

cpan va alors télécharger et installer le module. S’il dépend
d’autre modules, l’utilisateur devra confirmer l’installation
de ces dépendances.

Il existe une méthode plus directe d’installer un module.
Au lieu de lancer depuis la console :

cpan

puis d’entrer :

install Un::Module

Il est possible d’entrer directement depuis la console :

cpan Un::Module

Cela va directement installer le module en question.

Mettre à jour les modules

r upgrade

La commande r permet de lister tous les modules dont il
existe une mise à jour.

upgrade permet de mettre à jour un module, plusieurs, ou
tous. Sans argument, upgrade met à jour tous les modules.
Si un argument est donné, il servira de filtre.

10

i

i

“perl” — 2010/9/30 — 13:10 — page 11 — #27
i

i

i

i

i

i

Installer un module avec cpanm

Installer un module avec cpanm

cpanm Un::Module

Une nouvelle méthode pour installer un module Perl est
apparue avec l’arrivée du programme cpanm, dont le mo-
dule d’installation s’appelle App::cpanminus. cpanm permet
d’installer très rapidement un module Perl, sans aucune
interaction. Pour l’installer, il suffit d’utiliser cpan :

cpan App::cpanminus

ou encore plus simplement, de télécharger directement le
programme :

wget http://xrl.us/cpanm

chmod +x cpanm

La commande cpanm est alors disponible et peut être uti-
lisée en lieu et place de cpan. Pour installer un module, il
suffit de taper :

cpanm Un::Module

cpanm n’a pas besoin d’être configuré et n’affiche pas d’in-
formation tant que l’installation se passe bien. Les modules
dépendants sont automatiquement installés, ce qui fait que
l’utilisateur n’a pas à interagir avec cpanm.

11

i

i

“perl” — 2010/9/30 — 13:10 — page 12 — #28
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 13 — #29
i

i

i

i

i

i

Partie
I–

Langage
et

structures
de

données

3
Éléments

du langage

L’interpréteur perl s’exécute traditionnellement soit de-
puis la console, soit à travers un IDE.

Exécuter perl en ligne
de commande
Il est possible de donner des instructions directement à
perl sur la ligne de commande :

perl -E ’say "hello world";’

Astuce

Sous Windows, la console par défaut n’est pas très puissante, et
ne comprend pas les guillemets simples ’. On peut écrire la ligne
de cette façon :

perl -E "say ’hello world’;"

Ou bien utiliser une console de meilleure qualité, comme Tera
Term1 .

1. Disponible sur http://ttssh2.sourceforge.jp.

i

i

“perl” — 2010/9/30 — 13:10 — page 14 — #30
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

Cette manière d’exécuter du code Perl est très utile pour
effectuer des petites tâches, ou bien pour tester quelques
instructions :

perl -E ’my $variable = 40; $variable += 2; say $variable’

Cette commande affiche :

42

qui est bien le résultat de 40 + 2.

Info

L’option -E permet d’exécuter du code Perl fournit en argument
de la ligne de commande. Cette option est identique à -e sauf
qu’elle active toutes les fonctions des dernières versions de Perl.
Il est donc recommandé de toujours utiliser -E, et non -e.

L’interpréteur supporte beaucoup d’autres options. Elles
sont documentées dans le manuel perlrun2, mais voici les
plus importantes d’entre elles :

● -h : affiche un résumé des options de l’interpréteur.

● -w : active l’affichage des messages d’alertes (warnings).
Cette option est conseillée car un message de warnings
qui apparaît est souvent synonyme de bug potentiel.

● -d : lance l’exécution en mode déboggage. Très utile
pour trouver la source d’un problème dans un pro-
gramme (voir page 15).

Exécuter perl sur un fichier

perl fichier.pl

2. Accessible avec la commande man perlrun

14

i

i

“perl” — 2010/9/30 — 13:10 — page 15 — #31
i

i

i

i

i

i

Exécuter en mode déboggage

Il est plus pratique et pérenne de sauvegarder un pro-
gramme Perl dans un fichier et d’exécuter l’interpréteur
perl sur ce fichier :

perl fichier.pl

Info

L’extension de fichiers des programmes Perl est .pl. L’extension
de fichiers des modules Perl (voir page 43) est .pm.

Créer un fichier exécutable
Sous Unix (Linux, Mac OS X), il est possible de créer un
fichier qui s’exécutera directement avec perl en faisant
commencer le fichier par :

!/ usr / bin / perl

my $var = 40;

print $var + 2;

Il est également nécessaire de rendre le fichier exécutable
avec la commande chmod :

chmod u+x fichier.pl

Le fichier est maintenant exécutable :

./fichier.pl

Exécuter en mode déboggage

perl -d fichier.pl perl -d -E ’..’

15

i

i

“perl” — 2010/9/30 — 13:10 — page 16 — #32
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

Il est possible de lancer l’interpréteur perl en mode débog-
gage. Dans ce mode, l’interpréteur peut exécuter les ins-
tructions une par une, et l’utilisateur a la possibilité de
vérifier la valeur des variables, de changer leur contenu, et
d’exécuter du code arbitraire.

Astuce

Les IDE (voir page 4) permettent de débogguer un programme
Perl de manière visuelle, interactive, dans l’interface graphique,
sans avoir recours au mode console expliqué ci-dessous.

Eclipse, avec le mode EPIC, et Padre permettent ainsi à l’utilisa-
teur de placer visuellement des points d’arrêt (breakpoint), d’exé-
cuter pas à pas les programmes, et d’afficher le contenu des va-
riables.

Une fois perl lancé en mode déboggage, l’invite de com-
mande affiche ceci :

$ perl -d -E ’my $var = 40;’

...

main::(-e:1): my $var = 40;

DB<1>

Voici une sélection des commandes qu’il est possible d’en-
trer pour interagir avec le mode déboggage :

● h : permet d’afficher un récapitulatif des commandes.

● l : permet d’afficher le code source à l’endroit de l’ins-
truction en cours d’exécution.

● - : permet d’afficher les lignes précédant l’instruction en
cours.

● n : permet d’exécuter l’instruction en cours, sans ren-
trer dans le détail. Ainsi, si l’instruction est un appel de
fonction, celle-ci sera exécutée entièrement avant que
le mode déboggage s’arrête.

16

i

i

“perl” — 2010/9/30 — 13:10 — page 17 — #33
i

i

i

i

i

i

Règles générales du langage

● s : contrairement à n, s exécute l’instruction en cours,
mais s’arrête à la prochaine sous-instruction.

● r : exécute toutes les instructions jusqu’à la prochaine
instruction return.

● c : continue l’exécution du programme sans s’arrêter.

● b : place un point d’arrêt sur la ligne en cours. Il est
possible de donner un numéro de ligne, un nom de
fonction complet ou une condition en paramètre.

● q : quitte le mode déboggage.

Règles générales du langage
Un programme Perl est une suite d’instructions, séparées
par des point-virgules3.

Les instructions sont sensibles à la casse, donc Fonction

n’est pas la même chose que fonction.

Les noms de variables commencent par un sigil, c’est-à-
dire un caractère spécial qui permet de reconnaître son
type. Les chaînes de caractères sont généralement entou-
rées des caractères “ ou ’ (voir page 20).

Le langage propose des fonctions de base4. Il est bien sur
possible de créer des fonctions, pour modulariser le code.

En plus des fonctionnalités de base, il existe des centaines
de modules additionnels5 qui permettent d’enrichir le lan-
gage. Il est bien sûr possible d’écrire ses propres modules,

3. Il est possible d’omettre le point-virgule lors d’une fin de bloc, ou
une fin de fichier.

4. La liste complète des fonctions de base est accessible dans la docu-
mentation perlfunc, accessible sous Unix avec man perlfunc.

5. Les modules additionnels sont disponibles sur CPAN (http://cpan.

org), et installables à l’aide de la commande cpan (voir Chapitre 2).

17

i

i

“perl” — 2010/9/30 — 13:10 — page 18 — #34
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

pour rassembler les fonctionnalités semblables d’un logi-
ciel et les diffuser.

Astuce

Il est possible de passer à la ligne avant la fin d’une instruction.
Un retour chariot ne signifie pas une fin d’instruction. Seule un
point-virgule, une fin de bloc ou une fin de fichier permet de
signifier une fin d’instruction.

Cette fonctionnalité est très utile pour améliorer la lisibilité d’un
code source :

my @tableau = (’ sur ’, ’ une ’ , ’ ligne ’);

my @tableau2 = (’ sur ’ ,

’ plusieurs ’ ,

’ lignes ’

);

Les types de données
Perl propose de base trois types de données : les scalaires,
les tableaux et les tables de hachage. Ces types de données
sont expliqués en détail au Chapitre 5 (voir page 47), ce-
pendant en voici une introduction sommaire.

Les scalaires sont un type de données qui regroupe les
nombres (entiers ou flottants), les chaînes de caractères,
et les références (voir page 37). Voici quelques exemples
de scalaires : 42, -3, 0.01, 2e36, “une chaîne de carac-

tères”. Les variables contenant un scalaire sont identifiées
par le sigil $. Par exemple, $variable, $chaine.

Les tableaux sont des regroupements de scalaires. Ils sont à
taille variable, et leurs indices commencent à 0. Il n’est pas
nécessaire d’initialiser un tableau (voir page 47 pour plus

6. Correspond à 2∗103, donc 2 000.

18

i

i

“perl” — 2010/9/30 — 13:10 — page 19 — #35
i

i

i

i

i

i

Déclarer une variable scalaire

de détails). Les variables contenant un tableau sont identi-
fiées par le sigil @. Par exemple, @tableau, @elements.

Aussi appelées tableaux associatifs, ou simplement hash, les
tables de hachage sont des regroupements d’associations
clé-valeur. Les clés sont des chaînes de caractères, et les
valeurs sont des scalaires (voir page 47 pour plus de dé-
tails). Les variables contenant une table de hachage sont
identifiées par le sigil %. Par exemple, %hash.

Initialiser une variable scalaire
my $variable = ..

Déclarer une variable scalaire est très simple, il suffit d’uti-
liser l’opérateur d’affectation = :

my $nombre = 42;

my $test = " Ceci est une chaîne ";

Le mot-clé my permet de spécifier que la variable est lo-
cale, et non globale.

Déclarer une variable scalaire
my $variable

Une variable peut également être déclarée sans être initia-
lisée :

my $variable ;

Dans ce cas, $variable prend une valeur spéciale, undef,
qui signifie que la variable n’est pas initialisée.

19

i

i

“perl” — 2010/9/30 — 13:10 — page 20 — #36
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

Afficher un scalaire
print()

say()

Pour afficher un scalaire, il est possible d’utiliser print. Le
code suivant affiche le nombre 5 sur la console :

my $variable = 5;

print ($variable);

Cependant, pour faire de même mais avec un retour cha-
riot à la fin de la ligne, say est plus pratique :

my $texte = " Bonjour " ;

say ($texte);

say est une nouveauté de Perl 5.10, et se comporte comme
print, sauf qu’un retour chariot est ajouté à la fin.

Créer une chaîne de caractères
“chaine”, ’chaine’, q(chaine), qq(chaine)

Les chaînes de caractères appartiennent à la famille des sca-
laires. Il y a plusieurs méthodes pour créer une chaîne de
caractères :

● À l’aide des guillemets doubles “ : les guillemets doubles
permettent de créer une chaîne de caractères avec inter-
polation.

Info

Il est important de ne pas faire trop de différence entre un en-
tier, un flottant et une chaîne de caractères. En Perl, ils sont
tous regroupés sous la bannière des scalaires.

20

i

i

“perl” — 2010/9/30 — 13:10 — page 21 — #37
i

i

i

i

i

i

Créer une chaîne de caractères

my $chaine = ’ Ceci est une chaine ’;

contient : Ceci est une chaine ;

my $var = 42;

my $chaine = " Le resultat est $var ";

contient : Le resultat est 42;

Les caractères \n, \r etc. sont interprétés. Ainsi, un cer-
tain nombre de séquences d’échappement sont recon-
nues et interprétées (\n, \r, etc.). Le caractère d’échap-
pement est l’anti-slash (\).

print " Retour \ nChariot "

affiche :
Retour

Chariot

Pour insérer le caractère d’échappement ou des sigils, il
suffit de les protéger :

print " \ $var Retour \\ nChariot ";

affiche $var Retour \ nChariot

● À l’aide des guillemets simples ’ : les guillemets simples
permettent de créer une chaîne de caractères sans inter-
polation. Ainsi, un nom de variable ne sera pas remplacé
par sa valeur ; \n, \r etc. ne seront pas interprétés.

my $chaine = ’ Ceci est une chaine ’;

contient : Ceci est une chaine ;

my $var = 42;

my $chaine = ’ Le resultat est $var \n ’;

contient : Le resultat est $var \n;

● À l’aide de l’opérateur q() : l’opérateur q() permet de
créer une chaîne de la même façon que les guillemets

21

i

i

“perl” — 2010/9/30 — 13:10 — page 22 — #38
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

simples ’, mais la limite de la chaîne correspond à la
parenthèse fermante balancée :

print q (chaine avec ’, ", $var)

affiche : chaine avec ’, " , $var

print q (chaine (1 , 3))

affiche : chaine (1 , 3)

● À l’aide de l’opérateur qq() : de manière similaire, l’opé-
rateur qq() permet de créer une chaîne avec interpola-
tion.

Astuce

Il est possible d’utiliser q() et qq() avec d’autres caractères, par
exemple [] ou {}. Cela permet de créer des chaînes qui contiennent
des parenthèses non fermées et des guillemets :

print q [une d ’ erreur ("]

. $erreur .

q [") est apparue];

La notion de contexte
Une spécificité de Perl est la notion de contexte : Le com-
portement des opérateurs et l’évaluation des expressions
dépendent du contexte dans lequel ils sont interprétés. Les
contextes les plus souvent utilisés sont :

● Le contexte scalaire numérique. Une expression
évaluée dans ce contexte est considérée comme un sca-
laire numérique, c’est-à-dire un nombre. Dans ce con-
texte, un opérateur aura un comportement adapté aux
nombres. Par exemple, en contexte numérique, une
chaîne ”03.20” sera interprétée comme le nombre 3.2.
Attention, en contexte numérique, une liste ou un ta-
bleau sera interprété comme un nombre correspondant

22

i

i

“perl” — 2010/9/30 — 13:10 — page 23 — #39
i

i

i

i

i

i

La notion de contexte

au nombre d’éléments. En contexte scalaire numérique,
la valeur undef renvoie 0.

● Le contexte scalaire de chaîne. Dans ce contexte,
toute expression sera considérée comme une chaîne de
caractères. Ainsi, un nombre sera interprété comme une
suite de caractères. 3.2 sera interprété comme “3.2”.
En contexte scalaire de chaîne, la valeur undef renvoie
la chaîne vide “”.

● Le contexte de liste. C’est le contexte qui permet de
travailler avec des listes et des tableaux. En contexte de
liste, un tableau renvoie sa liste d’élément. En contexte
scalaire, un tableau renvoie un nombre (donc un sca-
laire) correspondant aux nombre d’éléments qu’il con-
tient. Attention, en contexte de liste, undef renvoie une
liste d’un élément contenant la valeur undef.

Info

Beaucoup d’opérateurs forcent le contexte. Une liste des opé-
rateurs qui forcent le contexte scalaire numérique ou bien de
chaîne est présentée ci-après (voir page 24).

D’autres opérateurs ne forcent pas de contexte. C’est le cas de
l’opérateur d’affectation = qui fonctionne avec des scalaires nu-
mériques, des chaînes de caractères ou des listes, sans forcer de
contexte. Dans ces cas-là, c’est le type des opérandes qui va in-
fluencer le contexte. Voici des exemples :

" 5.00 " + 3

Ici, l’opérateur + force le contexte numérique, et l’expression ren-
voie la valeur flottante 8.

my @tableau2 = @tableau1

Ici, la liste à gauche force l’évaluation de @tableau1 en contexte
de liste. @tableau2 contient les éléments de @tableau1.

my $taille = @liste

23

i

i

“perl” — 2010/9/30 — 13:10 — page 24 — #40
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

Le scalaire à gauche force l’évaluation de @liste en contexte
scalaire, ce qui renvoie la taille de la liste.

Il est possible de forcer un contexte de liste en utilisant des pa-
renthèses (..), et un contexte scalaire en utilisant scalar().

my ($element1) = @liste ;

Ici les parenthèses forcent le contexte de liste. $element contient
donc le premier élément de @liste.

my @tableau2 = scalar (@tableau1);

scalar force l’évaluation de @tableau1 en contexte scalaire, ce
qui renvoie sa taille. Cette dernière est alors stockée en tant que
premier élément dans @tableau2.

Travailler sur les nombres
+ - / * % . . .

Perl propose les opérateurs mathématiques classiques : +,
-, *, /, sin, cos, %.

** est disponible pour élever un nombre à une puissance.

Il existe des opérateurs raccourcis : ++, –, +=, -=.

my $var = 5;

$var ++; # var vaut 6

$var - -; # var vaut 5

$var += 5; # var vaut 10

$var -= 5; # var vaut 5

$var *= 2; # var vaut 10

Tous ces opérateurs forcent le contexte scalaire numé-
rique.

24

i

i

“perl” — 2010/9/30 — 13:10 — page 25 — #41
i

i

i

i

i

i

Travailler sur les chaînes

Astuce

$var++ renvoie la valeur de $var, puis incrémente $var, alors
que ++$var incrémente d’abord la variable, puis renvoie sa va-
leur. Ainsi, return($var++) est différent de return(++$var).

La notion de précédence

Les opérateurs de Perl n’ont pas tous le même poids, ils sont
plus ou moins « prioritaires ». On parle de leur précédence. Par
exemple, l’opérateur multiplication * a une précédence plus
forte que l’opérateur addition +.

Il est bien sûr possible de forcer l’application d’un opérateur
avant un autre par l’usage de parenthèses :
my $resultat = 3 * (2 + 4);

$resultat vaut bien 18

Il est utile de connaître la précédence des opérateurs pour évi-

ter les parenthèses superflues, qui nuisent à la lisibilité (voir

en annexe, page 429).

Travailler sur les chaînes
. length chomp split join reverse substr

index rindex

L’opérateur . permet de concaténer deux chaînes de
caractères. chop retire le dernier caractère d’une chaîne.
chomp effectue la même opération mais seulement si le
dernier caractère est un retour chariot.

split permet de séparer une chaîne par rapport à un motif
(une expression régulière, voir page 122). join permet

25

i

i

“perl” — 2010/9/30 — 13:10 — page 26 — #42
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

l’opération inverse :

my $chaine = " bcdaofiazz ";

say (join (" | " , split (/ a /, $chaine)));

affiche bcd | ofi | zz

substr permet de remplacer une portion de chaîne de
caractère par une autre. index et rindex permettent de
chercher une portion de chaîne de caractères dans une
autre en partant respectivement du début ou de la fin :

my $chaine = " Un lapin ";

substr ($chaine , 3, 0, " grand ");

$chaine vaut " Un grand lapin "

substr ($chaine , 0, 2, " Ce ") ;

$chaine vaut " Ce grand lapin "

my $var = index ($chaine , " lapin ") ;

$var vaut 9

Tous ces opérateurs forcent le contexte de chaîne.

Tester si un scalaire est défini
defined

Pour tester si un scalaire contient une valeur, on doit uti-
liser defined, qui renvoie vrai si la variable est définie.

Déclarer une fonction
sub fonction { }

Une fonction se déclare grâce au mot-clé sub, suivi d’un
nom et d’un bloc de code :

26

i

i

“perl” — 2010/9/30 — 13:10 — page 27 — #43
i

i

i

i

i

i

Passer des paramètres

ma_fonction () ;

sub ma_fonction { say " Dans ma fonction " }

ma_fonction () ;

Cet extrait de code affiche deux fois le texte Dans ma

fonction. Appeler une fonction se fait simplement en uti-
lisant son nom, suivi de parenthèses pour passer des para-
mètres.

Une fonction peut être utilisée avant ou après sa déclara-
tion.

Passer des paramètres

fonction($param)

Lors d’un appel de fonction, les paramètres sont passés
entre parenthèses à la suite du nom de la fonction, séparés
par des virgules :

ma_fonction (12 , " une chaîne " , -50) ;

C’est en fait une liste de scalaires qui est passée en para-
mètres. Pour récupérer les arguments de la fonction, voici
le code qu’il faut insérer au début de la déclaration de la
fonction :

sub ma_fonction {

my ($param1 , $param2 , $param3) = @_ ;

say " deuxième paramètre : $param2 " ;

}

@_ est une variable spéciale. C’est un tableau qui contient
les paramètres reçus par la fonction. La première ligne de
la fonction récupère les éléments du tableau @_, et stocke

27

i

i

“perl” — 2010/9/30 — 13:10 — page 28 — #44
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

les trois premiers dans les trois variables $param1, $param2,
$param3.

Attention

Il est important de ne pas oublier les parenthèses autour de la
liste des variables utilisées pour stocker les paramètres, et ce
même s’il n’y a qu’un paramètre à récupérer :

my ($param1) = @_ ;

Renvoyer une valeur de retour

return $valeur

Une fonction Perl peut bien sûr renvoyer une valeur de
retour, en utilisant return :

sub fois_dix {

my ($param) = @_ ;

return $param * 10;

}

my $resultat = fois_dix (2) ;

say $resultat ;

Le mot-clé return termine l’exécution de la fonction en
cours, et renvoie la ou les valeurs passés en paramètres.
L’appelant peut récupérer la valeur de retour en l’assignant
à une variable, ou bien en l’utilisant directement.

Astuce

Une fonction peut renvoyer plus d’une valeur, il suffit de renvoyer
une liste :

my ($mois , $annee) = fonction () ;

sub fonction {

28

i

i

“perl” — 2010/9/30 — 13:10 — page 29 — #45
i

i

i

i

i

i

Les opérateurs de test

return (12 , 1957) ;

}

Dans cet exemple, la variable $mois aura pour valeur 12, et $annee
1957.

Utiliser des variables dans
une fonction

my $variable

Lorsqu’une variable locale est déclarée dans une fonction,
elle est invisible depuis l’extérieur :

my $annee = 1900;

say fonction () ; # affiche 1800

say $annee ; # affiche 1900

sub fonction {

my $annee = 1800;

return $annee ;

}

Dans la fonction, la portée de la variable $annee est limi-
tée, et sa valeur n’est donc pas propagée au-delà de fonc-

tion.

Les opérateurs de test
== != eq ne

Il existe un nombre relativement grand d’opérateurs de
test en Perl. Ces opérateurs sont divisés en deux catégo-
ries, ceux qui forcent un contexte scalaire numérique, et
ceux qui forcent un contexte scalaire de chaîne.

29

i

i

“perl” — 2010/9/30 — 13:10 — page 30 — #46
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

Les opérateurs ==, !=, <, >, <=, >= permettent de tester
respectivement l’égalité, la différence, l’infériorité, la su-
périorité, sur des valeurs numériques. Pour ce faire, ces
opérateurs forcent le contexte scalaire numérique.

Vrai et faux en Perl

Toute expression est soit vraie ou fausse, selon sa valeur.
En Perl, comme la valeur d’une expression peut dépendre du
contexte en cours, voici la liste des cas où une expression est
vraie ou fausse.

● Nombres : un nombre est vrai s’il est différent de zéro.

● Chaînes de caractères : une chaîne de caractères est fausse

si elle est vide, c’est-à-dire qu’elle ne contient pas de carac-
tère. Cependant, la chaîne de caractères “0” est également
fausse. Dans les autres cas, une chaîne de caractères est une
expression vraie.

● Listes, tableaux : une liste ou un tableau sont vrais s’ils
contiennent au moins un élément. Une liste vide () ou un
tableau sans élément sont faux.

● Tables de hachage : c’est une très mauvaise idée de tester si
une table de hachage est vrai ou faux. Il faut toujours utiliser
la fonction keys qui renvoie la liste des clés, ce qui permet
de se replacer dans le cas d’une liste (voir page 80).

● undef : en contexte scalaire numérique, undef est évalué
comme 0, donc faux. En contexte scalaire de chaîne, undef
est évalué comme chaîne vide “”, donc faux. En contexte de
liste, undef est évalué comme une liste contenant un élé-
ment non définie, donc une liste de taille 1, donc vrai.

Il existe des opérateurs équivalents en contexte de chaînes,
qui permettent de tester l’égalité, la différence, l’infério-

30

i

i

“perl” — 2010/9/30 — 13:10 — page 31 — #47
i

i

i

i

i

i

Tester une expression

rité, la supériorité de deux chaînes entre elles : eq, ne, lt,
gt, le et ge. Ces opérateurs forcent le contexte scalaire de
chaîne.

La liste complète des opérateurs est disponible en annexe
(voir page 429).

Tester une expression

if(. . .) {. . .} elsif {. . .} else {. . .}

Tester une expression se fait simplement avec l’opérateur
if. Voici la forme traditionnelle, dite « forme préfixe ».

if ($number > 5) {

say " le nombre est plus grand que 5";

}

Il est possible d’ajouter un bloc else, qui est exécuté si le
test est faux :

if ($number > 5) {

say " le nombre est plus grand que 5";

} else {

say " le nombre est plus petit ou égal à 5"

;

}

Il est également pratique de chaîner les tests, avec elsif :

if ($number > 5) {

say " le nombre est plus grand que 5";

} elsif ($number < 5) {

say " le nombre est plus petit que 5";

} else {

say " le nombre est égal à 5" ;

}

31

i

i

“perl” — 2010/9/30 — 13:10 — page 32 — #48
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

Quelques remarques sur cette forme de l’opérateur if :

● Les parenthèses autour de l’expression à tester sont obli-
gatoires.

● Les accolades sont également obligatoires autour des
blocs de code, et ce même si le bloc ne contient qu’une
ligne.

Bien évidemment, l’expression à tester peut être très com-
plexe, comporter des appels de fonctions, etc. L’opéra-
teur if interprète l’expression en contexte scalaire, comme
l’illustre l’exemple suivant :

une liste contenant un élément ,

l ’ entier zéro

my @list = (0) ;

if (@list) {

say " la liste est non vide ";

}

L’exemple de code précédent affiche bien à l’écran la

liste est non vide. En effet, la liste @list contient un
élément, l’entier 0. Cependant, en contexte scalaire, une
liste renvoie le nombre d’éléments qu’elle contient. Donc
@list en contexte scalaire renvoie 1, qui est vrai, et donc
le test est vrai.

Effectuer une opération
conditionnelle

do_something() if $expression

Il existe une autre forme de l’opérateur if, appelée « forme
infixe ». L’expression à tester est placée à la droite du mot-
clé if, et le code à exécuter si le test est validé, à gauche
du if. Cet ordre peut paraître incongru, mais correspond
en fait à l’ordre logique linguistique.

32

i

i

“perl” — 2010/9/30 — 13:10 — page 33 — #49
i

i

i

i

i

i

Effectuer une opération si un test est faux

En effet il est courant d’entendre en français : « Ouvre la
fenêtre s’il fait trop chaud ». Ce qui peut s’écrire en Perl :

open_window () if too_hot () ;

Les intérêts de cette forme sont notamment :

● Parenthèses optionnelles. Les parenthèses autour de
l’expression à tester ne sont pas obligatoires.

● Pas d’accolades. Le code à exécuter ne doit pas être
entouré d’accolades ;

● Lisibilité. La structure du code ressemble plus à une
grammaire linguistique.

Cependant, cette forme est probablement moins facile à
appréhender par des personnes peu expérimentées. En sus,
cette forme ne permet pas l’utilisation de else.

Effectuer une opération si un test
est faux

do_something unless $expression

L’inverse du if infixe est l’opérateur unless infixe, qui
peut être interprété comme « sauf » :

say " ’ $number ’ est positif " unless $number

<= 0;

Un autre exemple utilisant l’opérateur modulo % :

say " le nombre est pair " unless $number % 2;

Ce programme affiche le nombre est pair sauf si $num-
ber % 2 renvoie vrai, ce qui est le cas si $number est impair.

33

i

i

“perl” — 2010/9/30 — 13:10 — page 34 — #50
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

Cet exemple illustre le fait que l’utilisation de unless peut
rendre la compréhension du code difficile.

unless est équivalent à if ! :

say " le nombre est pair " if ! ($number % 2) ;

Tester négativement
une expression

unless(. . .) {. . .}

L’opérateur unless existe également sous « forme pré-
fixe ». Là aussi, il est équivalent à if ! :

unless ($number % 2) {

say " ’ $number ’ est pair ";

do_something () ;

}

Effectuer des tests avec and
et or

and

or

En Perl, il est très important de connaître la précédence
des opérateurs principaux, et les bonnes pratiques veulent
que les parenthèses inutiles soient évitées. Il existe un couple
d’opérateur intéressant : and et or.

and et or sont identiques à && et ||, mais ont une très
faible précédence. Ils sont interprétés en bout de chaîne

34

i

i

“perl” — 2010/9/30 — 13:10 — page 35 — #51
i

i

i

i

i

i

Boucler sur les éléments d’une liste

de l’évaluation d’une expression, et de ce fait, sont utilisés
comme charnières entre les morceaux de code à exécuter.
Ainsi, les opérateurs and et or sont utilisés à la place de if

et unless.

Voici un exemple d’utilisation de or :

do_something () or die " erreur : $!";

Ce code peut être décomposé en deux blocs, de part et
d’autre de or.

Le bloc_1 : do_something()

Le bloc_2 : die "erreur : $!"

L’interpréteur de Perl va évaluer la ligne comme :

bloc_1 or bloc_2

Si bloc_1 renvoie vrai, alors l’ensemble de l’expression est
vrai, donc bloc_2 ne sera pas exécuté. Si bloc_1 renvoie
faux, alors il faut évaluer bloc_2. Donc, si l’appel de fonc-
tion do_something() renvoie faux, le programme s’arrête
et affiche l’erreur.

De manière similaire, on peut voir ce type de code :

do_something () and say " success !" ;

Ce programme affichera success! si do_something() ren-
voie vrai.

Boucler sur les éléments
d’une liste

foreach(. . .) {. . .}

35

i

i

“perl” — 2010/9/30 — 13:10 — page 36 — #52
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

Il existe deux types principaux de boucles. La boucle for-

each permet d’effectuer des opérations pour chaque élé-
ments d’une liste donnée, et la boucle while s’exécute tant
qu’un test est vrai (voir section suivante).

foreach my $element (1 , 2, " hello ") {

say $element ;

}

Cet exemple de code utilisant foreach affiche successive-
ment les éléments passés à la liste foreach. Il est possible
d’omettre la variable temporaire (ici $element). Dans ce
cas, l’élément en cours est stocké dans la variable spéciale
$_ :

foreach (1 , 2, " hello ") {

say $_ ;

}

Le mot-clé last permet de sortir prématurément d’une
boucle en cours. next quant à lui, oblige la boucle à passer
à la prochaine itération immédiatement.

Boucler tant qu’un test est vrai

while(. . .) {. . .}

Les boucles while évalue la valeur de l’expression passée
en paramètre ; tant qu’elle est vraie, le bloc de code est
exécuté.

my $chaine = " animal " ;

while (my $car = chop $chaine) {

say $car ;

}

36

i

i

“perl” — 2010/9/30 — 13:10 — page 37 — #53
i

i

i

i

i

i

Créer une référence sur scalaire

Cet extrait de code affiche toutes les lettres de la chaîne
“animal”, mais en partant de la fin. En effet, chop en-
lève le dernier caractère de $chaine, et le renvoie. $car
va donc contenir les caractères de la chaîne un à un, en
partant de la fin. Tant que $chaine contient au moins
un caractère, la valeur de l’expression my $car = chop

$chaine est celle de $car, qui est une chaîne non vide,
donc vrai.

Quand $chaine est vide, chop renvoie une chaîne vide,
qui est également stockée dans $car. Dans ce cas, l’éva-
luation de l’expression my $car = chop $chaine est la
chaîne vide, qui est faux. La boucle while s’arrête alors
immédiatement.

Créer une référence sur scalaire
\$var

Voici comment créer une référence sur un scalaire :

my $variable = 5;

my $ref = \ $variable ;

La variable $ref est maintenant une référence sur $va-

riable.

Info

En plus des nombres et des chaînes de caractères, il existe un
autre type de scalaire : les références. Une référence est une va-
riable qui pointe sur une autre variable. Cela permet notamment
de passer une variable par référence.

Il est possible de créer une référence sur un scalaire, sur une liste,
ou sur une table de hachage. Ces deux derniers types de réfé-

37

i

i

“perl” — 2010/9/30 — 13:10 — page 38 — #54
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

rences sont abordés dans le chapitre sur les structures de données
(voir pages 67 et 84).

Déréférencer une référence
sur scalaire

$$var

Déréférencer une référence se fait en ajoutant le sigil $
devant la variable référence :

my $variable = 5;

my $ref = \ $variable ;

my $variable2 = $$ref ;

$variable2 vaut 5

Accéder à une variable
référencée

$$ref

Le double sigil $$ devant la référence permet d’accéder à
la valeur de la variable référencée directement, pour récu-
pérer sa valeur, ou la mettre à jour.

my $variable = 5;

my $ref = \ $variable ;

$$ref = 6;

say $variable ;

affiche 6

38

i

i

“perl” — 2010/9/30 — 13:10 — page 39 — #55
i

i

i

i

i

i

Passer un paramètre par référence

Passer un paramètre par référence

Lors d’un appel de fonction, il n’est généralement pas utile
de passer des scalaires par référence. En effet, il suffit de les
renvoyer par valeur de retour de la fonction :

my $var1 = 5;

my $var2 = 2;

my ($var1 , $var2) = modif_valeurs ($var1 ,

➥$var2) ;

say " résultat : $var1 , $var2 ";

sub modif_valeurs {

my ($var1 , $var2) = @_ ;

$var1 ++;

$var2 - -;

return ($var1 , $var2);

}

Cet exemple affichera :

résultat : 6, 1

Cependant, il est également possible de passer un scalaire
par référence :

my $var1 = 5;

my $var2 = 2;

modif_valeurs (\ $var1 , \ $var2);

say " résultat : $var1 , $var2 ";

sub modif_valeurs {

my ($ref_var1 , $ref_var2) = @_ ;

$$ref_var1 ++;

$$ref_var2 - -;

}

Cet extrait de code a exactement le même effet, sauf qu’il
n’est pas nécessaire de renvoyer les deux variables en va-
leurs de retour de la fonction modif_valeurs. En effet,

39

i

i

“perl” — 2010/9/30 — 13:10 — page 40 — #56
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

leur références sont passées en paramètres, et la valeur des
variables pointées par les références sont modifiées direc-
tement, avec $$ref_var1++.

Utiliser des références
sur fonctions
Il est possible de créer des références sur fonctions ano-
nymes. Ce mécanisme est très puissant, car il permet de
passer des portions de code en paramètres, puis de les exé-
cuter.

Créer une référence sur fonction se fait ainsi :

my $ref_transform = sub {

my ($var) = @_ ; $var ++; return $var ;

};

Attention

Le caractère point-virgule ; est obligatoire à la fin de la défini-
tion de sub. La référence sur fonction définie est stockée dans la
variable $ref_transform, c’est donc une allocation de variable,
qui doit se terminer par un point-virgule.

À présent, la variable $ref_transform contient une réfé-
rence sur une fonction anonyme. Il est possible de la ma-
nipuler de diverses manières. Elle peut par exemple être
passée à une autre fonction comme un simple scalaire.

Pour exécuter la fonction référencée, il faut utiliser cette
notation :

$ref_transform - >(42) ;

L’opérateur flèche -> permet de déréférencer et d’exécuter
la fonction, en passant 42 en paramètre.

40

i

i

“perl” — 2010/9/30 — 13:10 — page 41 — #57
i

i

i

i

i

i

Récupérer les arguments de la ligne de commande

Voici un exemple d’utilisation :

my $ref_transform = sub {

my ($var) = @_ ; $var ++; return $var ;

};

say appliq_transform (12 , $ref_transform);

sub appliq_transform {

my ($var , $ref_fonction) = @_ ;

my $result = $ref_fonction - >($var);

return $result ;

}

Cet exemple renvoie 13. L’extrait de code peut paraître
inutile, cependant l’intérêt majeur est que la fonction ap-

pliq_transform ne sait rien de la fonction qu’elle reçoit
par référence. Il est possible de changer le comportement
de appliq_transform en changeant juste $ref_transform.

Ce mécanisme est un aspect de la programmation fonc-
tionnelle. Perl permet de manipuler non seulement des
données, mais aussi des morceaux de programmes.

Récupérer les arguments de
la ligne de commande

@ARGV

Lorsqu’un script Perl est lancé depuis la ligne de com-
mande, il est possible de lui passer des paramètres :

./ script . pl argument1 argument2

Pour pouvoir récupérer ces paramètres à l’intérieur du
script, il suffit d’utiliser la variable spéciale @ARGV :

my ($param1 , $param2) = @ARGV ;

41

i

i

“perl” — 2010/9/30 — 13:10 — page 42 — #58
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

@ARGV est un tableau dont les éléments sont les valeurs des
paramètres de la ligne de commande.

Info

Plutôt que d’essayer d’interpréter les paramètres de lignes de
commandes complexes tels que –file-name “/tmp/file” –flag

–port=5432, il est plus judicieux d’utiliser l’un des nombreux mo-
dules d’interprétation des paramètres de ligne de commande, tel
que Getopt::Long.

Exécuter des commandes
système

system(), `. . .`

La commande system permet d’exécuter une commande
externe. Les back-quotes ` . . .` permettent d’exécuter
une commande et de récupérer sa sortie standard sous
forme de chaîne de caractères dans une variable.

system (" echo exemple ");

my $contenu = ‘ls / tmp ‘;

Terminer abruptement
un programme

die

La fonction die permet d’arrêter le programme instanta-
nément, et permet d’afficher un message d’erreur – passé
en paramètre de die – sur la console.

42

i

i

“perl” — 2010/9/30 — 13:10 — page 43 — #59
i

i

i

i

i

i

Créer un module Perl

open my $f , "/ tmp / fichier "

or die " erreur d ’ ouverture ";

Créer un module Perl
package

Les modules Perl sont des extensions du langage, qui en-
richissent les fonctionnalités de Perl (voir le Chapitre 2,
dédié à l’installation des modules).

Un module Perl est un fichier avec une extension .pm. Il
contient l’instruction spéciale package, qui permet définir
un espace de nommage (namespace) pour ce module7.

package Mon :: Module

sub test {

say " chaîne de test ";

}

1;

L’exemple précédent est à stocker dans un fichier Mon/-
Module.pm. En effet, il y a une correspondance entre le
nom du module et son nom de fichier. Les doubles deux-
points :: correspondent à un répertoire. Ainsi, Mon::-
Module correspond au fichier Mon/Module.pm.

Un module – ou package – Perl doit se terminer par une
expression vraie, qui signifie que le module s’est correcte-
ment chargé. Traditionnellement, cela se fait en ajoutant
la ligne 1; à la fin du fichier.

7. Par abus de langage, comme la plupart des modules ne contiennent
souvent qu’un seul espace de noms, les termes module et package sont
souvent utilisés de manière interchangeable.

43

i

i

“perl” — 2010/9/30 — 13:10 — page 44 — #60
i

i

i

i

i

i

CHAPITRE 3 Éléments du langage

Toute fonction définie dans un module peut être appelée
depuis un script Perl (fichier en extension .pl) pour peu
que le module soit chargé dans le script.

Utiliser un module Perl
use Mon::Module;

Dans un script Perl, pour utiliser un module Perl, il suffit
d’utiliser use, qui va charger le module dans l’environne-
ment du script.

use Mon :: Module ;

Mon :: Module :: test () ;

affiche " chaine de test "

Concrètement, use transforme le nom du module en nom
de fichier. Ici Mon::Module est transformé en Mon/Mo-
dule.pm. Ce fichier est recherché dans une liste de réper-
toires8. Si le fichier est trouvé, il est chargé, sinon, une
erreur survient.

Il est possible d’ajouter un répertoire à la liste des réper-
toire de recherche de modules grâce à use lib.

Voici un exemple de code qui illustre cette fonctionalité.
Ici, le module Mon::Module est stocké dans le fichier /ho-
me/user/perl/Mon/Module.pm. L’instruction use lib “/ho-

me/user/perl” l’ajoute à la liste des répertoires de re-
cherche.

8. Cette liste de répertoire est accessible, elle est stokée dans la variable
spéciale @INC : perl -E ’say for @INC’ renvoie la liste des répertoires
d’où peuvent être chargés les modules.

44

i

i

“perl” — 2010/9/30 — 13:10 — page 45 — #61
i

i

i

i

i

i

Utiliser un module Perl

use lib "/ home / user / perl ";

use Mon :: Module

Mon :: Module :: test () ;

affiche " chaine de test "

Les fonctions du module peuvent être appelées en acco-
lant leur noms au nom du module.

Les modules Perl offrent énormément de fonctionnali-
tés, mais il est plus pertinent d’utiliser la programmation
orientée objet, qui permet d’utiliser classes, méthodes et
instances, au lieu de modules et fonctions (voir la partie II
consacrée à la programmation orientée objet).

45

i

i

“perl” — 2010/9/30 — 13:10 — page 46 — #62
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 47 — #63
i

i

i

i

i

i

4
Structures

de données

Nous allons aborder dans ce chapitre les structures de don-
nées dites « simples » : listes, tableaux et tableaux associa-
tifs (tables de hachage). Ces types de données complètent
les scalaires dans l’utilisation basique de Perl, et sont in-
dispensables à la programmation plus avancée, ainsi qu’à
l’utilisation des modules externes CPAN.

Nous présenterons également une sélection de modules
permettant d’étendre les opérateurs de base du langage,
List::Util et List::MoreUtils).

Créer une liste
(1, 2, 3)

Une liste est, pour simplifier, un ensemble fini de scalaires.
Voici quelques exemples de listes :

(1 , 2, 3) ;

(-25 , 42 , 3.141592) ;

(’ une hirondelle ’, 3, ’un lapin ’, -.5) ;

i

i

“perl” — 2010/9/30 — 13:10 — page 48 — #64
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Une liste peut contenir des entiers, flottants, chaînes de
caractères, et même d’autres types – telles par exemple les
références, voir pages 67 et 84 –, du moment que ce sont
des scalaires.

Les éléments d’une liste sont ordonnés : (1, 2, 3) est
différent de (1, 3, 2), bien que ces listes contiennent les
mêmes éléments.

Créer une liste avec un intervalle
..

Tant qu’il y a peu d’éléments, une liste est facile à créer :

(1 , 2, 3, 4, 5) ;

(’a ’, ’b ’, ’c ’, ’d ’);

Cependant, il existe l’opérateur intervalle, constitué de
deux points successifs .., qui permet de créer facilement
une liste : en donnant ses bornes, l’opérateur crée la liste
correspondante, en interpolant les éléments manquants.
Pour les nombres entiers, cela donne :

(1..5) ;

renvoit (1 , 2, 3, 4, 5) ;

L’opérateur intervalle ne fonctionne que dans l’ordre crois-
sant, donc l’exemple suivant renvoie une liste vide :

(5..1) ;

renvoit une liste vide

48

i

i

“perl” — 2010/9/30 — 13:10 — page 49 — #65
i

i

i

i

i

i

Créer une liste de mots

Comment créer une liste de nombres décroissants ? Nous
verrons comment faire cela lorsque sera abordée la fonc-
tion reverse (voir page 60).

L’opérateur intervalle fonctionne également sur les chaînes
de caractères :

(’a ’.. ’z ’) ;

toutes les lettres de l ’ alphabet

(’ aa ’ .. ’ bb ’) ;

est équivalent à :

(’ aa ’ , ’ ab ’ , ’ac ’, ’ad ’, ’ae ’, ’af ’,

’ ag ’ , ’ ah ’ , ’ai ’, ’aj ’, ’ak ’, ’al ’,

’ am ’ , ’ an ’ , ’ao ’, ’ap ’, ’aq ’, ’ar ’,

’ as ’ , ’ at ’ , ’au ’, ’av ’, ’aw ’, ’ax ’,

’ ay ’ , ’ az ’ , ’ba ’, ’bb ’) ;

Créer une liste de mots
qw()

Il est souvent très utile de créer des listes de mots, comme
par exemple :

(’ avancer ’, ’ reculer ’, ’ tourner ’,

➥’ démarrer ’) ;

Les listes de mots sont tellement courantes qu’il existe un
opérateur dédié, qui facilite leur écriture : l’opérateur qw.
Son nom vient de l’abréviation de « Quoted Word », et il
permet d’éviter d’écrire les guillemets autour des mots, et
les virgules entre eux :

qw (avancer reculer tourner démarrer) ;

49

i

i

“perl” — 2010/9/30 — 13:10 — page 50 — #66
i

i

i

i

i

i

CHAPITRE 4 Structures de données

On pourra donc écrire :

foreach my $action (

qw (avancer reculer tourner démarrer)

) {

...

}

Astuce

L’opérateur qw s’utilise généralement avec des parenthèses, mais
il est possible d’utiliser d’autres délimiteurs. Les lignes suivantes
sont équivalentes :

qw (avancer reculer tourner démarrer)

qw [avancer reculer tourner démarrer]

qw / avancer reculer tourner démarrer /

qw ! avancer reculer tourner démarrer !

L’intérêt est évident lorsqu’il faut créer des listes de caractères
non alphanumériques :

qw [. ()]

renvoie (’.’, ’(’, ’) ’)

qw /[] () /

renvoie (’[’, ’]’, ’(’, ’) ’)

Créer un tableau à une dimension
@array = . . .

Pour faire simple, un tableau est une variable qui contient
une liste. Le sigil d’un tableau est @ :

my @array ;

50

i

i

“perl” — 2010/9/30 — 13:10 — page 51 — #67
i

i

i

i

i

i

Accéder aux éléments d’un tableau

Pour initialiser un tableau, une liste peut lui être assignée :

my @array = (’ fraise ’ , 12 , ’ framboise ’);

my @array2 = (1..10) ;

my @array3 = qw (pomme fraise

framboise poire);

Si un tableau n’est pas initialisé, il contient par défaut la
liste vide ().

my @array ;

équivalent à :

my @array = () ;

Accéder aux éléments
d’un tableau

$array[n]

Accéder à un élément d’un tableau se fait en utilisant l’in-
dice de l’élément, entre crochets :

my @array = (121 , 122 , 123) ;

my $element = $array [0];

$element contient 121;

$element = $array [1];

$element contient 122;

$element = $array [1 + 1];

$element contient 123;

Attention

Les indices des éléments commencent à 0. $array[0] est le pre-
mier élément, $array[1] est le deuxième élément, etc.

51

i

i

“perl” — 2010/9/30 — 13:10 — page 52 — #68
i

i

i

i

i

i

CHAPITRE 4 Structures de données

À la lecture de cet exemple, il est possible de formuler
plusieurs remarques :

● Pour accéder à un élément d’un tableau, c’est le sigil $1

qui est utilisé. Ainsi il faut écrire $array[1] pour accéder
au deuxième élément, et non pas @array[1].

● Un indice n’est pas obligatoirement un nombre, il peut
être une expression, qui sera évaluée en contexte scalaire
en tant qu’entier, et le résultat sera utilisé comme indice.

En application directe, voici comment afficher un élément
d’un tableau :

say " le 3e élément est : $array [2] ";

équivalent à

say ’ le 3e élément est : ’ . $array [2];

Affecter un élément d’un tableau
$array[n] = . . .

Pour changer un élément, il suffit d’assigner une valeur à
l’élément d’un tableau. Il est bien sûr possible de faire des
calculs directement avec des éléments de tableaux :

my @array = (10 , 20 , 30) ;

$array [1] = 15;

le tableau vaut à présent (10 , 15 , 30) ;

$array [2] = $array [0] * 2.5;

le tableau vaut à présent (10 , 15 , 25) ;

1. Un bon moyen mnémotechnique est de considérer ce qui est obtenu
lorsque l’expression est évaluée. Ici, c’est l’élément du tableau qui est
désiré, donc un scalaire. Par conséquent, l’expression doit commencer
par le sigil $.

52

i

i

“perl” — 2010/9/30 — 13:10 — page 53 — #69
i

i

i

i

i

i

Obtenir le dernier élément d’un tableau

$array [0] -= 5;

le tableau vaut maintenant (5 , 15 , 25) ;

$array [$array [0]] = 12;

le tableau vaut maintenant

(5 , 15 , 25 , undef , undef , 12) ;

Obtenir le premier élément
d’un tableau

$array[0]

Comme la numérotation des indices commence à zéro,
array[0] correspond au premier élément du tableau.

Obtenir le dernier élément
d’un tableau

$array[-1]

Perl permet d’utiliser des entiers négatifs comme indices,
qui permettent de parcourir les éléments d’un tableau en
partant de la fin. Ainsi l’indice -1 correspond au dernier
élément d’un tableau, et ainsi de suite :

my @array = (10 , 20 , 30 , 40) ;

say $array [-1];

Affiche 40

say $array [-2];

Affiche 30

$array [-2] -= $array [-3];

le tableau vaut (10 , 20 , 10 , 40) ;

53

i

i

“perl” — 2010/9/30 — 13:10 — page 54 — #70
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Obtenir la taille d’un tableau
$size = @array

La taille d’un tableau est le nombre d’éléments qu’il con-
tient. En Perl, il n’y a pas de fonction particulière pour
obtenir la taille d’un tableau, il suffit de l’évaluer en contexte
scalaire. Sous cette description en apparence compliquée,
se cache une opération très simple. Soit le code suivant :

my $size = @array ;

Attention

Une erreur classique est d’essayer d’utiliser la fonction length

pour calculer la taille d’un tableau : cela ne fonctionne pas. En
effet, length calcule la longueur d’une chaîne de caractères uni-
quement. length attend donc un scalaire en paramètre. Si on
donne un tableau en argument, length va renvoyer la longueur
de la représentation textuelle du dernier élément du tableau.

À gauche, un scalaire, $size ; à droite, un tableau. Le fait
que l’expression de gauche soit un scalaire oblige l’expres-
sion de droite à être évaluée en contexte scalaire. Le tableau
de droite, en contexte scalaire, renvoie le nombre d’élé-
ments qu’il contient. C’est en effet le seul résultat utile qui
peut être stocké dans un unique scalaire.

Astuce

On peut forcer le contexte scalaire grâce à la fonction scalar :

my $size = scalar (@array);

En cas de doute sur le contexte dans lequel est évalué le tableau
ou la liste, il faut utiliser scalar() pour en obtenir la taille.

54

i

i

“perl” — 2010/9/30 — 13:10 — page 55 — #71
i

i

i

i

i

i

Tester les éléments d’un tableau

Assigner un élément en dehors
du tableau
Assigner un élément en dehors des limites d’un tableau
est parfaitement valide. Le tableau va être étendu d’autant
d’éléments que nécessaire pour avoir la bonne taille. Les
éléments créés en plus seront indéfinis.

my @array = (10 , ’ poire ’, 30 , 40) ;

$array [4] = 50;

@array vaut maintenant

(10 , ’ poire ’, 30 , 40 , 50)

$array [7] = 80;

@array vaut maintenant

(10 , ’ poire ’, 30 , 40 , 50 ,

undef , undef , ’80 ’)

Tester les éléments d’un tableau
exists(..) defined(..)

Chaque élément d’un tableau étant un scalaire, tous les
tests sur les scalaires s’appliquent aux éléments d’un ta-
bleau :

my @array = (10 , ’ poire ’, 30 , 40) ;

if ($array [1] eq ’ abricot ’) {

...

}

if ($array [0] > 5) {

...

}

55

i

i

“perl” — 2010/9/30 — 13:10 — page 56 — #72
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Mais il est aussi possible de tester la présence et la dé-
finition d’un élément. La fonction exists renvoie vrai
si l’élément existe ; defined teste si un élément est dé-
fini. L’exemple suivant explicite la nuance entre les deux
concepts :

my @array = (10 , 20 , 30) ;

$array [4] = 50;

@array vaut maintenant

(10 , 20 , 30 , undef , 50)

ce test est vrai

if (exists $array [4]) {

...

}

ce test est faux

if (defined $array [4]) {

...

}

Le test utilisant exists renvoie vrai car il y a un élément à
l’indice 4. Cependant, cet élément n’est autre que undef,
et donc le second test échoue.

Manipuler la fin d’un tableau

push(..) pop()

Il est courant de vouloir ajouter des éléments à un tableau :
par exemple, calculer des résultats, et les ajouter à un ta-
bleau, puis renvoyer le tableau, comme liste de résultats.
Bien sûr, il est possible d’ajouter un élément à la fin d’un
tableau en déduisant le dernier indice de sa taille :

my @array = (10 , ’ fraise ’ , 30) ;

my $size = @array ; # renvoie 3

56

i

i

“perl” — 2010/9/30 — 13:10 — page 57 — #73
i

i

i

i

i

i

Manipuler le début d’un tableau

$array [$size] = 40;

@array vaut (10 , ’ fraise ’, 30 , 40)

Mais c’est un peu rébarbatif. Il est beaucoup plus rapide
d’utiliser push, qui permet d’ajouter un élément à un ta-
bleau :

my @array = (10 , ’ fraise ’ , 30) ;

push @array , 40;

@array vaut (10 , ’ fraise ’, 30 , 40)

Astuce

En fait, push permet d’ajouter plus d’un élément à un tableau.
Ainsi, push est capable d’ajouter une liste à la fin d’un tableau.

my @array = (10 , ’ fraise ’ , 30) ;

push @array , 40 , 50;

@array vaut (10 , ’ fraise ’, 30 , 40 , 50)

L’inverse de push est pop, qui permet d’enlever un élé-
ment de la fin d’un tableau. pop ne permet pas d’enlever
plus d’un élément à la fois. L’élément qui est retiré du
tableau est renvoyé. Donc, la valeur de retour de pop cor-
respond au dernier élément du tableau :

my @array = (10 , ’ fraise ’ , 30) ;

my $last_element = pop @array ;

@array vaut maintenant (10 , ’ fraise ’)

et $last_element vaut 30

Manipuler le début d’un tableau

shift(..)

unshift(..)

57

i

i

“perl” — 2010/9/30 — 13:10 — page 58 — #74
i

i

i

i

i

i

CHAPITRE 4 Structures de données

push et pop sont utilisés pour manipuler la fin d’un ta-
bleau, il existe l’équivalent pour le début : shift retire
le premier élément d’un tableau et le renvoie, et unshift
permet d’ajouter une liste d’éléments au début du tableau.

my @array = (10 , ’ fraise ’ , 30) ;

my $first_element = shift @array ;

@array vaut maintenant (’ fraise ’, 30)

et $first_element vaut 10

unshift @array , $first_element , 42;

@array vaut (10 , 42 , ’ fraise ’, 30)

Info

Avec unshift, les éléments sont ajoutés tous ensemble et non
un par un, leur ordre originel est donc respecté.

Manipuler le milieu d’un tableau

splice(..)

Voici comment manipuler une zone arbitraire contigüe
d’un tableau.

La fonction splice permet de sélectionner des éléments
d’un tableau, pour les supprimer ou les remplacer par d’au-
tres. splice prend en argument le tableau, un indice à par-
tir duquel commencer la sélection, un entier représentant
la taille de la sélection, et une liste d’éléments qui rem-
placeront la sélection le cas échéant. L’exemple suivant
remplace les deuxième et troisième éléments par un seul
élément :

58

i

i

“perl” — 2010/9/30 — 13:10 — page 59 — #75
i

i

i

i

i

i

Manipuler le milieu d’un tableau

my @array = (10 , ’ fraise ’ , 30 , 40) ;

splice @array , 1, 2, ’ pomme ’;

@array vaut maintenant (10 , ’ pomme ’, 40)

Il est également possible que la liste de remplacement soit
plus grande que la sélection :

my @array = (10 , ’ fraise ’ , 30 , 40) ;

splice @array , 1, 2, ’ pomme ’ , ’ poire ’ ,

➥’ abricot ’;

@array vaut maintenant

(10 , ’ pomme ’, ’ poire ’, ’ abricot ’, 40)

Si la liste de remplacement est omise, splice va ôter la
sélection du tableau uniquement.

my @array = (10 , ’ fraise ’ , 30 , 40) ;

splice @array , 1, 2;

@array vaut maintenant (10 , 40)

Si la longueur de la sélection est omise, splice va tronquer
le tableau à partir de l’indice de départ.

my @array = (10 , ’ fraise ’ , 30 , 40) ;

splice @array , 2;

@array vaut maintenant (10 , ’ fraise ’)

Astuce

L’indice de départ peut être négatif, pour sélectionner depuis la
fin du tableau.

La longueur de sélection peut également être négative : splice(
@array, 3, -2) enlèvera tous les éléments à partir du 4e, sauf
les deux derniers du tableau.

59

i

i

“perl” — 2010/9/30 — 13:10 — page 60 — #76
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Supprimer un élément
d’un tableau

splice(..)

Il ne faut pas confondre « réinitialiser un élément » et
« supprimer un élément ». Réinitialiser un élément, c’est le
mettre à undef, ce qui s’effectue très simplement comme
suit :

my @array = (10 , ’ fraise ’ , 30) ;

$array [1] = undef ;

@array vaut maintenant (10 , undef , 30)

Pour supprimer un élément d’un tableau, il faut enlever
l’élément en question du tableau. Pour cela il est possible
d’utiliser splice :

my @array = (10 , ’ fraise ’ , 30) ;

splice @array , 1, 1;

@array vaut maintenant (10 , 30) ;

Inverser une liste ou un tableau
reverse(..)

Les listes et tableaux sont ordonnés. Il est possible de les
inverser, c’est-à-dire de les retourner, de manière à ce que
les éléments soient dans l’ordre opposé, en utilisant re-
verse :

my @array = (10 , ’ fraise ’ , 30 , 40) ;

@array = reverse @array ;

@array vaut (40 , 30 , ’ fraise ’, 10) ;

60

i

i

“perl” — 2010/9/30 — 13:10 — page 61 — #77
i

i

i

i

i

i

Aplatir listes et tableaux

Il est possible de faire la même chose sur les listes directe-
ment :

my @array = reverse (10 , ’ fraise ’, 30 , 40) ;

@array vaut (40 , 30 , ’ fraise ’, 10) ;

Astuce

Précédemment, il a été dit qu’il était impossible de définir un in-
tervalle décroissant en utilisant ... Cependant, grâce à reverse,
c’est possible et facile :

(’a ’.. ’z ’) ;

renvoie toutes les lettres

dans l ’ ordre alphabétique

reverse (’a ’.. ’z ’)

renvoie toutes les lettres de l ’ alphabet

de z vers a

reverse (1..3)

est équivalent à

(3 , 2, 1)

Aplatir listes et tableaux
L’aplatissement des listes est un élément important du lan-
gage Perl et il est primordial de bien comprendre ce mé-
canisme.

Examinons les listes suivantes :

(1, 2, ’a ’ , ’b ’)

(1, 2, (’a ’, ’b ’))

(1, (2 , ’a ’) , ’b ’)

((1, 2, ’a ’) , ’b ’)

61

i

i

“perl” — 2010/9/30 — 13:10 — page 62 — #78
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Contre toute attente, ces listes sont équivalentes entre elles,
et sont « aplaties ».

Ce principe est valable également pour les tableaux :

my @array1 = (10 , ’ fraise ’, 30 , 40) ;

my @array2 = (’a ’, ’b ’ , ’c ’);

my @array3 = (@array1 , @array2);

@array3 vaut (10 , ’ fraise ’, 30 , 40 , ’a ’,

➥’b ’, ’c ’);

@array3 = (@array3 , 1, 2) ;

@array3 vaut maintenant

(10 , ’ fraise ’, 30 , 40 , ’a ’, ’b ’, ’c ’,

➥1, 2) ;

Il est donc impossible de créer des « tableaux de tableaux »
en essayant de regrouper une liste de tableaux ensemble.
Pour créer des tableaux à n dimensions voir page 67.

Manipuler une tranche
de tableau

@array[a..b]

En plus de splice, Perl permet de travailler avec des tranches
de tableau (slice en anglais). Une tranche de tableau est une
sélection d’indices d’un tableau. Une tranche permet de
récupérer ou d’assigner une partie d’un tableau. Il est in-
téressant de noter qu’une tranche n’est pas nécessairement
contiguë. Les exemples suivants permettent de se familia-
riser avec ces slices :

récupérer une partie contiguë d ’ un tableau

my @array = (10 , ’ fraise ’ , 30 , 40 , ’ pomme ’);

my @tranche = @array [1, 2];

@tranche vaut (’ fraise ’, 30)

62

i

i

“perl” — 2010/9/30 — 13:10 — page 63 — #79
i

i

i

i

i

i

Manipuler une tranche de tableau

@tranche = @array [1..3];

@tranche vaut (’ fraise ’, 30 , ’40 ’) ;

Attention

Lors d’une utilisation d’une tranche de tableau, le sigil du tableau
reste @.

Il est possible d’utiliser une tranche contigüe pour rem-
placer des éléments :

remplacer des éléments contigus

my @array = (10 , ’ fraise ’ , 30 , 40 , ’ pomme ’);

@array [1, 2] = (’ poire ’ , ’ citron ’) ;

@array vaut maintenant

(10 , ’ poire ’, ’ citron ’, 40 , ’ pomme ’)

Attention

Contrairement à splice, il n’est pas possible de changer la taille
d’une tranche. Les éléments en trop seront ignorés, et ceux man-
quants seront remplacés par undef.

my @array = (10 , ’ fraise ’ , 30 , 40 , ’ pomme ’);

@array [1 , 2] = (’ poire ’) ;

@array vaut maintenant

(10 , ’ poire ’, undef , 40 , ’ pomme ’)

@array [1 , 2] = (’ poire ’, ’ citron ’, ’ pêche ’);

@array vaut maintenant

(10 , ’ poire ’, ’ citron ’, 40 , ’ pomme ’)

Cette propriété peut être utilisée pour réinitialiser (mettre
à undef) une partie de tableau :

my @array = (10 , ’ fraise ’ , 30 , 40 , ’ pomme ’);

@array [1, 2] = () ;

@array vaut maintenant

(10 , undef , undef , 40 , ’ pomme ’)

63

i

i

“perl” — 2010/9/30 — 13:10 — page 64 — #80
i

i

i

i

i

i

CHAPITRE 4 Structures de données

En plus des listes, les tableaux peuvent être utilisés pour
spécifier une tranche :

my @indices = (2 , 3) ;

my @array = (10 , ’ fraise ’ , 30 , 40 , ’ pomme ’);

@array [@indices] = (’ abricot ’ , ’ citron ’) ;

@array vaut maintenant :

(10 , ’ fraise ’,’ abricot ’,’ citron ’,’ pomme ’)

Là où les tranches deviennent très puissantes, c’est qu’elles
peuvent être discontinues. Voici un exemple qui travaille
avec les nombres pairs et impairs :

my @pairs = (0 , 2, 4, 6) ;

my @impairs = (1 , 3, 5, 7) ;

my @array = (0..7) ;

@array [@pairs] = (reverse (4..1)) ;

@array [@impairs] = (reverse (8..5));

@array vaut maintenant :

(4 , 8, 3, 7, 2, 6, 1, 5)

L’opérateur virgule

Contrairement à ce qu’il paraît, et contrairement à d’autres
langages, ce ne sont pas les parenthèses qui caractérisent une
liste, mais c’est la virgule.
1, 2

est une liste valide. La virgule , est l’opérateur qui crée la
liste2 . Cependant, une liste est pratiquement toujours écrite
avec des parenthèses autour des éléments, car l’opérateur vir-
gule a une très faible précédence (voir le tableau de précé-
dence des opérateurs, page 429).

2. En fait, l’opérateur virgule change de comportement suivant le
contexte. En contexte de liste, la virgule crée une liste. En contexte
scalaire, le dernier élément est renvoyé.

64

i

i

“perl” — 2010/9/30 — 13:10 — page 65 — #81
i

i

i

i

i

i

Boucler sur les éléments d’un tableau

a = 12, 13;

est équivalent à

(a = 12), 13;

Le tableau @a contiendra un unique élément (12). Pour
connaître l’ordre de précédence, voir la liste des opérateurs
page 429. On y voit que l’opérateur virgule est presque tout en
bas de la liste, alors que l’opérateur = est au-dessus.

En conclusion : toujours utiliser des parenthèses autour des

listes, mais savoir que c’est la virgule qui crée la liste.

Boucler sur les éléments
d’un tableau

foreach (. . .) {. . .}

foreach permet d’effectuer des opérations en boucle. Il
existe plusieurs syntaxes possibles, mais la syntaxe mo-
derne est la suivante :

foreach my $variable (expression) {

corps de la boucle utilisant $variable

}

L’expression est interprétée en contexte de liste, et pour chaque
élément de l’expression, le corps de la boucle est inter-
prété, $variable valant l’élément en question3. L’exemple

3. En fait, $variable. n’a pas juste la valeur de l’élément en cours, c’est
un alias dessus. Changer la valeur de $variable change l’élément, du
moins si l’élément peut être modifié. Ainsi
foreach my $v (1, 2) { $v++ } renverra une erreur, mais
foreach my $v (@j = (1,2)) { $v++ } say “@j”

affichera 2 3. Cependant, utiliser ce mécanisme n’est pas recommandé,
car l’affectation, trop peu visible, est source de nombreux bogues.

65

i

i

“perl” — 2010/9/30 — 13:10 — page 66 — #82
i

i

i

i

i

i

CHAPITRE 4 Structures de données

naïf suivant affiche une liste au format HTML4 :

say ’ ’;

foreach avec une liste

foreach my $fruit (’ pomme ’, ’ fraise ’,

➥’ framboise ’) {

say " $fruit </ li > ";

}

say ’ </ ul > ’;

Le code précédent utilise une simple liste de chaînes de
caractères, qui sont affichés, encadrés par et .
foreach fonctionne aussi sur les tableaux :

tout l ’ alphabet

my @alphabet = (’a ’ .. ’z ’);

my $count = 0;

foreach my $lettre (@alphabet) {

say ’la ’ . ++ $count .

’e lettre de l\’ alphabet est : ’ .

$lettre ;

}

Bien sûr, il est possible d’évaluer n’importe quelle expres-
sion, et le résultat sera utilisé pour boucler :

my @entiers = (0..100) ;

my @alphabet = (’a ’ .. ’z ’);

foreach my $e (@entiers [7..11] ,

➥@alphabet [7..11]) {

print "$e - ";

}

affiche 7 -8 -9 -10 -11 -h -i -j -k -l -

4. Ce n’est pas une méthode recommandée pour générer du HTML de
manière propre. Pour cela, utilisez par exemple le module Template::-

Toolkit.

66

i

i

“perl” — 2010/9/30 — 13:10 — page 67 — #83
i

i

i

i

i

i

Référencer un tableau

Dans le code précédent, il faut se souvenir du concept
d’aplatissement de liste, qui fait que @entiers[7..11], @al-

phabet[7..11] est vu comme une seule liste des entiers de
7 à 11, et des lettres de h à l (voir page 61).

Créer un tableau à plusieurs
dimensions
Les éléments d’une liste ou d’un tableau sont des scalaires.
Il n’est donc pas possible de stocker un tableau (car ce n’est
pas un scalaire) en tant qu’élément : le concept d’aplatis-
sement s’applique (voir page 61).

Cependant, il y a un moyen très simple (et de nombreux
outils syntaxiques) pour construire des tableaux à n dimen-
sions, et d’autres structures plus compliquées, en utilisant
des références.

Référencer un tableau
[1, 2, 3]

\@array

Une référence est un scalaire spécial, qui « pointe » sur
autre chose, que ce soit un autre scalaire, un tableau, une
table de hachage.

Pour obtenir une référence, il est possible d’utiliser \ sur
un tableau, qui renvoie une référence pointant dessus. []

peut également être utilisé, cela permet de créer une ré-
férence sur une liste directement, ou sur un tableau déjà
existant. Ces méthodes basiques sont résumées dans le code
suivant :

67

i

i

“perl” — 2010/9/30 — 13:10 — page 68 — #84
i

i

i

i

i

i

CHAPITRE 4 Structures de données

my @array = (1 , 2, 3) ;

my $ref_array = \ @array ;

$ref_array est une référence sur @array

my $ref_array = [1 , 2, 3];

$ref_array est une référence sur (1 , 2, 3)

Dans l’exemple précédent, [1, 2, 3] est appelé une réfé-
rence vers un tableau anonyme.

Déréférencer un tableau
@{$ref_array}

Pour accéder à un tableau référencé, il faut utiliser @{} :

my $ref_array = [1 , 2, 3];

my @array = @{ $ref_array };

L’opérateur @{} évalue l’expression donnée, et déréférence
le résultat en tableau. Lorsqu’il n’y a pas d’ambiguïté, les
accolades peuvent être omises :

my $ref_array = [1 , 2, 3];

my @array = @$ref_array ;

Il est possible d’accéder directement à un élément d’un ta-
bleau en partant de sa référence, grâce à l’opérateur flèche
-> :

my $ref_array = [1 , 2, 3];

my $value = $ref_array - >[1];

$value vaut 2

68

i

i

“perl” — 2010/9/30 — 13:10 — page 69 — #85
i

i

i

i

i

i

Créer des références dans un tableau

Créer des références dans
un tableau
Les références sont très utiles pour créer des tableaux à
deux dimensions ou plus. Au lieu d’essayer de stocker des
tableaux dans des tableaux, il suffit de stocker des réfé-
rences dans un tableau simple.

Pour illustrer l’explication, voici un exemple, dans lequel
il s’agit de créer un tableau à deux dimensions. Soit 3 étu-
diants, pour lesquels il faut stocker leur moyenne générale
pour les 3 premiers mois de l’année. La première dimen-
sion du tableau sera donc les 3 premiers mois de l’année,
de 0 à 2. Dans la seconde dimension, donc pour chaque
mois, seront stockées les moyennes générales des élèves.

Voici les données disponibles : le premier élève a eu 10
en janvier, 13 en février et 12.5 en mars ; le second élève
a obtenu 12 le premier mois de l’année, puis 10, et enfin
7 en mars ; la moyenne du dernier élève était de 15 en
janvier, 17 en février et 18 en mars.

Voici un moyen de stocker ces valeurs dans un tableau à
deux dimensions :

création des références sur tableaux

my $ref_month_1 = [10 , 12 , 15];

my $ref_month_2 = [13 , 10 , 17];

my $ref_month_3 = [12.5 , 7, 18];

ensuite , stockage dans un tableau général

my @students_averages = ($ref_month_1 ,

$ref_month_2 ,

$ref_month_3

);

Cette manière de faire a l’avantage d’être simple et ex-
plicite, mais elle n’est pas très puissante. Nous aurions pu
écrire directement le tableau final comme suit :

69

i

i

“perl” — 2010/9/30 — 13:10 — page 70 — #86
i

i

i

i

i

i

CHAPITRE 4 Structures de données

définition et initialisation

du tableau final directement

my @students_averages = ([10 , 12 , 15] ,

[13 , 10 , 17] ,

[12.5 , 7, 18] ,

);

Accéder à un tableau de tableaux
Pour cette section, le tableau @students_averages précé-
demment créé va être réutilisé. Un tableau à n dimensions
est un tableau normal, dans lequel des références sont sto-
ckées. Logiquement, il est possible d’accéder à un de ses
éléments en utilisant son indice. La valeur ainsi récupérée
sera une référence, qu’il faudra déréférencer pour pouvoir
l’exploiter.

Par exemple, pour récupérer la moyenne du deuxième
élève au mois de mars :

my $ref_march = $students_averages [2];

my @march = @$ref_march ;

my $average_in_march = @march [1];

Cependant, Perl permet d’utiliser le raccourci ->. Cet opé-
rateur permet de déréférencer, puis d’accéder à un élé-
ment directement :

my $average_in_march =

➥$students_averages [2] - >[1];

Une autre syntaxe est possible, en faisant disparaître pure-
ment et simplement la flèche :

my $average_in_march =

➥$students_averages [2][1];

70

i

i

“perl” — 2010/9/30 — 13:10 — page 71 — #87
i

i

i

i

i

i

Dumper un tableau

Info

Certains développeurs préfèrent garder l’opérateur -> pour indi-
quer plus clairement qu’il s’agit d’un déréférencement, d’autres
préfèrent la notation plus courte qui est similaire à d’autres lan-
gages.

Modifier un tableau de tableaux
Comme dans le cas d’un tableau plat, il suffit d’affecter
une valeur pour modifier le tableau :

le 3e élève a eu 11 en janvier , et non 15

$students_averages [0] - >[2] = 11;

ajout du mois d ’ avril

$students_averages [3] = [14 , 5, 16];

idem , mais cette fois en déréférençant

à gauche

@ { $students_averages [3]} = (14 , 5, 16) ;

Dumper un tableau
« Dumper » est un anglicisme, qui vient du verbe dump,
utilisé en anglais pour « définir une action de vidage mémoire
vers un périphérique de sortie, généralement à des fins d’ana-
lyse, effectuée suite à une exception ou erreur5 ». En pratique,
« dumper » une structure permet de récupérer une chaîne
de caractères qui la décrit, pour pouvoir l’afficher.

Le moyen le plus simple est d’utiliser un module standard
fourni avec Perl, Data::Dumper. Il prend en argument la

5. http://fr.wikipedia.org/wiki/Dump.

71

i

i

“perl” — 2010/9/30 — 13:10 — page 72 — #88
i

i

i

i

i

i

CHAPITRE 4 Structures de données

structure à afficher, et renvoie une chaîne de caractères. Il
est préférable de lui donner la référence sur la structure.

Charge le module

use Data :: Dumper ;

offre un affichage plus concis

$Data :: Dumper :: Indent = 0;

my @array = (1 , 2, 3) ;

say Dumper (\ @array);

affiche à l ’ écran :

$VAR1 = [1 ,2 ,3];

Info

$Data::Dumper::Indent = 0 met la variable $Indent du mo-
dule Data::Dumper à 0. Cette variable gère le niveau d’indenta-
tion de sortie de la méthode Dumper. Lorsque cette variable est
initialisée à zéro, le texte produit est très concis.

Dans cet exemple, l’intérêt est minime : il n’est pas très
intéressant de vérifier que le tableau contient bien 1, 2,

3 car c’est comme cela qu’il a été initialisé. Mais Data::-
Dumper est d’une efficacité redoutable pour vérifier le con-
tenu d’une structure construite dynamiquement.

use Data :: Dumper ;

$Data :: Dumper :: Indent = 0;

construction de la table XOR

des 3 premiers entiers .

my @table_de_xor ;

foreach my $i (0..2) {

foreach my $j (0..2) {

$table_de_xor [$i][$j] = $i xor $j ;

}

}

72

i

i

“perl” — 2010/9/30 — 13:10 — page 73 — #89
i

i

i

i

i

i

Dumper un tableau

say Dumper (\ @array);

affiche à l ’ écran :

$VAR1 = [[0 ,0 ,0] ,[1 ,1 ,1] ,[2 ,2 ,2]];

Le résultat affiché n’est pas bon, ce n’est pas le résultat de
l’opération XOR sur les entiers entre eux. L’erreur vient
du fait que l’exemple de code utilise l’opérateur xor alors
que c’est l’opérateur ^ qui effectue un XOR sur les entiers
bits à bits.

Le code correct est le suivant :

use Data :: Dumper ;

affichage plus concis

$Data :: Dumper :: Indent = 0;

construction de la table XOR

des 3 premiers entiers

my @table_de_xor ;

foreach my $i (0..2) {

foreach my $j (0..2) {

$table_de_xor [$i][$j] = $i ^ $j ;

}

}

say Dumper (\ @table_de_xor);

affiche à l ’ écran :

$VAR1 = [[0 ,1 ,2] ,[1 ,0 ,3] ,[2 ,3 ,0]];

Cet exemple montre l’utilité principale de Data::Dumper :
vérifier qu’une structure de données est bien conforme
au résultat escompté. Cet outil est très important lors du
déboggage des programmes.

73

i

i

“perl” — 2010/9/30 — 13:10 — page 74 — #90
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Utiliser les tables de hachage

Une table de hachage est une structure qui permet d’asso-
cier un scalaire (généralement une chaîne de caractères),
qui s’appelle alors clé, à un autre scalaire (généralement une
autre chaîne, un nombre, ou une référence sur d’autres
structures) : c’est la valeur.

Il est très courant en français d’utiliser simplement le mot
« hash », comme contraction de « table de hachage ».

Les tables de hachage sont plus connues dans d’autres lan-
gages sous le nom de « tableaux associatifs » ; qu’en Perl,
ils sont souvent plus souples.

Le sigil d’une table de hachage est % :

my % hash ;

L’opérateur flèche double

Avant de décrire les fonctionnalités des tables de hachage, il
est important de s’attarder sur l’opérateur « flèche double ».
L’opérateur => est en fait un remplaçant de l’opérateur vir-
gule, mais il permet d’économiser l’utilisation des guillemets,
et rend le code source plus lisible. Voici deux extraits de codes,
qui sont équivalents, utilisés dans ce cas pour construire un
tableau.

sans l’utilisation de =>

my @array = (’pomme’,’poire’,’fraise’,’framboise’);

avec l’utilisation de =>

my array = (pomme => ’poire’, fraise => ’framboise’);

L’opérateur => est équivalent à l’opérateur virgule, sauf qu’il

force l’argument gauche à être une chaîne. On dit qu’il évalue

le paramètre de gauche « en contexte de chaîne ».

74

i

i

“perl” — 2010/9/30 — 13:10 — page 75 — #91
i

i

i

i

i

i

Créer une table de hachage

Créer une table de hachage

%hash = (. . .)

La manière la plus courante de créer une table de hachage
est de le faire à partir d’une liste :

my % hash = (

’ michel ’ , 25 ,

’ jean ’, 42 ,

’ christine ’, 37 ,

);

Cette table de hachage associe un prénom à un âge. Mi-
chel a 25 ans, Jean 42, et Christine 37. Nous pouvons
écrire la même table de hachage en utilisant l’opérateur
=> :

my % hash = (

michel => 25 ,

jean => 42 ,

christine => 37 ,

);

Il est indéniable que cette deuxième forme est plus concise
et claire : l’économie des guillemets n’est pas négligeable,
et la relation d’associativité y est mieux représentée grâce
à la flèche, même si le code source n’est pas indenté pro-
prement :

my % hash = (michel => 25 , jean => 42 ,

➥christine => 37) ;

est plus claire que :

my % hash = (’ michel ’, 25 , ’ jean ’, 42 ,

➥’ christine ’, 37) ;

75

i

i

“perl” — 2010/9/30 — 13:10 — page 76 — #92
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Une table de hachage est ainsi une table d’association, qui
permet de relier deux types de valeurs. Le seul impératif
est que ces valeurs soient des scalaires. Mais comme une
référence est un scalaire, il est possible et facile d’associer
une clé à des structures.

La table de hachage ci-dessous illustre le fait qu’une clé
peut être une chaîne ou un nombre (qui sera interprété
comme une chaîne6), et les valeurs peuvent être n’importe
quel scalaire, tel que nombre, chaîne ou référence (sur
tableau ou sur table de hachage).

my % hash = (

nombre => 12 ,

chaîne => " ceci est une chaîne " ,

pairs => [0, 2, 4, 6, 8],

impairs => [1, 3, 5, 7, 9],

tableau => \ @array ,

fruits => [qw (pomme , poire , citron ,

➥ fraise)],

42 => " réponse " ,

) ;

Accéder aux éléments d’une table
de hachage

$hash{clé}

Créer une table de hachage n’est utile que s’il est aisé
de manipuler ses éléments. Une manière d’accéder à un
élément d’une table de hachage est de connaître sa clé :

6. En fait n’importe quel scalaire peut être utilisé, mais en dehors d’un
nombre ou d’une chaîne, cela donnera des résultats surprenants et pro-
bablement inutilisables.

76

i

i

“perl” — 2010/9/30 — 13:10 — page 77 — #93
i

i

i

i

i

i

Accéder aux éléments d’une table de hachage

$hash{clé}. Il n’est pas nécessaire de mettre des guille-
ments autour de la clé s’il n’y a pas d’ambiguïté7.

Un élément d’une table de hachage peut être utilisé pour
récupérer une valeur ou pour l’assigner, et donc ajouter et
modifier des valeurs :

my % hash = (jean => 25) ;

ajouter une association

$hash { michel } = 34;

modifier une association

$hash { jean } = 26;

afficher une valeur

say " jean a " . $hash { jean } . " ans ." ;

say " michel a " . $hash { michel } . " ans . ";

Ici , les guillemets sont obligatoires

$hash { ’ marie - claire ’} = 16;

say ’ Marie - claire ’ .

($hash { ’ marie - claire ’} > 17 ? ’ est ’ :

➥ "n ’ est pas ")

. ’ majeure ’;

Cette manière d’accéder à un élément permet de le réini-
tialiser, c’est-à-dire de le mettre à undef :

my % hash = (jean => 25) ;

ajouter une association

$hash { michel } = 34;

effacer une association

$hash { michel } = undef ;

peut s ’ écrire également

undef $hash { michel };

7. C’est-à-dire si la clé ne contient pas de caractère espace ou un opé-
rateur, et si elle ne commence pas par un chiffre. Par exemple, test,
chat_1, r0b1n3t sont valides. Mais Marie Claire, jean-jacques sont
invalides.

77

i

i

“perl” — 2010/9/30 — 13:10 — page 78 — #94
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Attention

La table de hash de l’exemple précédent contient toujours deux
associations : jean et michel. La valeur de l’association michel

est undef, mais la table de hachage contient bien deux entrées.

Supprimer un élément d’une table
de hachage

delete $hash{clé}

delete permet d’enlever une association d’une table de
hachage, et s’utilise très simplement :

my % hash = (jean => 25) ;

delete $hash { jean }

le hash ne contient plus rien

Tester l’existence et la définition
d’un élément

exists $hash{clé}

defined $hash{clé}

exists permet de savoir si, pour une clé donnée, il existe
une association dans la table de hachage en question. de-
fined renvoie vrai si la valeur de l’association est définie,
faux dans les autres cas.

78

i

i

“perl” — 2010/9/30 — 13:10 — page 79 — #95
i

i

i

i

i

i

Utiliser des tranches de hashs

Attention

Il ne faut pas confondre existence d’une association, et le fait
que la valeur soit définie. Voici un exemple de code qui illustre
les deux concepts :

my % hash = (jean => 25 ,

julie => undef ,

) ;

exists $hash { jean }; # renvoie vrai

defined $hash { jean }; # renvoie vrai

exists $hash { julie }; # renvoie vrai

defined $hash { julie }; # renvoie faux

exists $hash { marc }; # renvoie faux

defined $hash { marc }; # renvoie faux

exists représente l’existence d’une association (même vers une
valeur non définie), alors que defined correspond au fait que la
valeur pointée par la clé soit définie.

Utiliser des tranches de hashs
hash{a..b}

Comme pour les tableaux, il est possible de manipuler des
tranches (slice en anglais) de tableaux de hachage. Il suffit
pour cela d’utiliser non pas une clé, mais une liste8 de clés
pour spécifier plusieurs valeurs, qui sont alors renvoyées
sous forme de liste.

Attention

Lors d’une utilisation d’une tranche de hash, le sigil du hash se
transforme de % en @.

8. Ou un tableau.

79

i

i

“perl” — 2010/9/30 — 13:10 — page 80 — #96
i

i

i

i

i

i

CHAPITRE 4 Structures de données

my % hash = (jean => 25 ,

julie => undef ,

michel => 12 ,

) ;

my @ages = @hash { ’ jean ’, ’ michel ’};

@ages contient (25 , 12)

my @ages = @hash { ’ julie ’, ’ michel ’ };

@ages contient (undef , 12)

Bien sûr, il est possible d’assigner plusieurs valeurs à la fois
en utilisant une tranche :

my % hash = (jean => 25);

@hash { ’ julie ’ , ’ michel ’} = (42 , 12) ;

% hash vaut maintenant :

jean => 25 ,

julie => 42 ,

michel => 12

Comme les clés sont spécifiées grâce à une liste ou un
tableau, il est possible d’utiliser l’opérateur qw() :

my % hash = (jean => 25);

@hash { qw (julie michel) } = (42 , 12) ;

Il est bien sûr possible de créer un tableau de clés et de
l’utiliser pour définir une tranche :

my @cles = qw (julie michel) ;

my % hash = (jean => 25);

@hash { @cles } = (42 , 12) ;

Obtenir la liste des clés
keys %hash

80

i

i

“perl” — 2010/9/30 — 13:10 — page 81 — #97
i

i

i

i

i

i

Obtenir la liste des valeurs d’une table de hachage

keys renvoie la liste des clés du hash :

my % hash = (jean => 25 ,

julie => undef ,

michel => 12 ,

) ;

my @cles = keys % hash

@cles vaut (’ jean ’, ’ julie ’, ’ michel ’)

Attention

L’ordre des clés renvoyées est aléatoire, mais c’est le même que
l’ordre des valeurs renvoyées par values.

Obtenir la liste des valeurs d’une
table de hachage

values %hash

values renvoie la liste des valeurs du hash :

my % hash = (jean => 25 ,

julie => undef ,

michel => 12 ,

) ;

my @valeurs = values % hash ;

@valeurs vaut (25 , undef , 12)

Attention

L’ordre des valeurs renvoyées est aléatoire, mais c’est le même
que l’ordre des clés renvoyées par keys.

81

i

i

“perl” — 2010/9/30 — 13:10 — page 82 — #98
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Dumper un hash
De la même manière que Data::Dumper peut être utilisé
pour dumper un tableau, ce module permet également
d’explorer un hash, ou tout autre structure de données
complexe.

use Data :: Dumper ;

$Data :: Dumper :: Indent = 0;

my % hash = (nom => ’ jean ’,

age => 12 ,

notes => [10 , 13.5 , 18]

) ;

say Dumper (\% hash) ;

affiche à l ’ écran :

$VAR1 = {’ nom ’ => ’ jean ’,

’ notes ’ => [10 , ’ 13.5 ’ ,18] ,

’ age ’ => 12};

Il est important de se rendre compte qu’une table de ha-
chage ne stocke pas l’ordre des couples clé-valeur, pour
des raisons de performances9.

Boucler sur un hash
avec foreach

foreach (. . .) {. . .}

La première méthode classique pour parcourir une table
de hachage est d’utiliser foreach sur les clés du hash, et de
récupérer la valeur pour chaque clé :

9. Il existe des modules qui proposent des tables de hachage qui gardent
l’ordre, ou même qui trient à la volée leur contenu, comme par exemple
Tie::Hash::Sorted.

82

i

i

“perl” — 2010/9/30 — 13:10 — page 83 — #99
i

i

i

i

i

i

Boucler sur un hash avec each

my % hash = (jean => 25 ,

michel => 12 ,

) ;

foreach my $key (keys % hash) {

my $value = $hash { $key };

say " l ’ age de $key est : $value ";

}

Cette méthode a l’avantage d’être explicite et simple à
comprendre.

Boucler sur un hash avec each

each

Il existe cependant un autre moyen de « boucler » à la fois
sur les clés et valeurs d’une table de hachage, en utilisant
la fonction each :

my % hash = (jean => 25 ,

michel => 12 ,

) ;

while (my ($key , $value) = each % hash) {

say " l ’ age de $key est : $value ";

}

La fonction each renvoie les couples clé-valeur du hash
un à un. Lorsque tous les couples ont été renvoyés, each
renvoie une liste vide (c’est ce qui fait que la boucle while

s’arrête), puis recommence au début du hash.

Attention

L’ordre des couples clé-valeur renvoyés est aléatoire, mais c’est le
même que l’ordre des clés renvoyées par keys ou celui des valeurs
renvoyées par values.

83

i

i

“perl” — 2010/9/30 — 13:10 — page 84 — #100
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Référencer un hash

{ clé => valeur } \%hash

Comme pour les tableaux, il est aisé de créer une référence
sur un hash.

Pour obtenir une référence, il est possible d’utiliser \ sur
une table de hachage, qui renvoie une référence pointant
dessus. Pour créer une référence sur un ensemble de clé-
valeur directement, il existe également { } :

my % hash = (nom => " Hugo " , prenom =>

➥" Victor ");

my $ref_hash = \% hash ;

$ref_hash est une référence sur @hash

my $ref_hash = { nom => " Hugo " , prenom =>

➥" Victor " };

$ref_hash est une référence

Déréférencer un hash
%{$ref_array}

Pour accéder à un hash référencé, il faut utiliser %{} :

my $ref_hash = { nom => " Hugo " , prenom =>

➥" Victor " };

my % hash = %{ $ref_hash };

L’opérateur %{} évalue l’expression donnée, et déréférence
le résultat en hash. Lorsqu’il n’y a pas d’ambiguïté, les ac-
colades peuvent être omises :

84

i

i

“perl” — 2010/9/30 — 13:10 — page 85 — #101
i

i

i

i

i

i

Créer des structures hybrides

my $ref_hash = { nom => " Hugo " , prenom =>

➥" Victor " };

my % hash = % $ref_hash ;

Pour accéder directement à un élément d’un hash à partir
d’une référence, il faut utiliser l’opérateur flèche -> :

my $ref_hash = { nom => " Hugo " , prenom =>

➥" Victor " };

my $prenom = $ref_hash - >{ prenom };

$prenom vaut " Victor "

Créer des structures hybrides
Il est facile de créer des structures plus complexes, en
combinant les tableaux, hash, listes et en utilisant des réfé-
rences.

Pour créer un hash de tableaux, il suffit d’utiliser des ré-
férences de tableaux, et de les stocker dans une table de
hachage. Ainsi, il est facile de créer une structure de don-
nées pour représenter un élève et ses notes sur les trois
premiers mois :

my % eleve1 = (

nom => ’ Dupont ’,

prenom => ’ Jean ’ ,

notes => { janvier => [12 , 9, 14 , 10],

fevrier => [13 , 15 , 8, 9],

mars => [12 , 8, 11 , 12.5]

}

) ;

Accéder à la troisième note du mois de février de cet élève
se fait ainsi :

my $note = $eleve1 { notes } - >{ février } - >[2];

note vaut 8

85

i

i

“perl” — 2010/9/30 — 13:10 — page 86 — #102
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Ce code peut également s’écrire comme suit :

my $note = $eleve1 { notes }{ février }[2];

Transformer tous les éléments d’un
tableau ou d’une liste avec map

map {. . .} @tableau

Les opérations de base sur les tableaux et listes consistent
en général à manipuler un ou plusieurs éléments. Mais
Perl propose de manipuler des listes en entier grâce à map

et grep.

map permet d’appliquer des transformations sur tous les
éléments d’un tableau ou d’une liste. Il prend en argu-
ment :

● un bloc de code10 à exécuter ;

● une liste ou un tableau.

Le bloc de code sera exécuté autant de fois qu’il y a d’élé-
ments dans la liste ou le tableau, et pour chaque itération,
la variable spéciale $_ prendra la valeur de l’élément.

exemple avec un tableau

my @tableau = (1..3) ;

@tableau2 = map { $_ * 2 } @tableau1 ;

@tableau2 contient (2, 4, 6)

même exemple avec une liste

@tableau = map { $_ * 2 } (1..3) ;

@tableau contient (2, 4, 6)

10. Il est possible de donner une expression comme premier argument,
mais cette manière d’utiliser map est déconseillée.

86

i

i

“perl” — 2010/9/30 — 13:10 — page 87 — #103
i

i

i

i

i

i

Transformer tous les éléments d’un tableau ou d’une liste avec map

Il est possible d’écrire l’équivalent d’un code utilisant map
avec un morceau de code utilisant foreach, mais généra-
lement cela prend plus de lignes. Voici un exemple qui
illustre très bien cela. Il s’agit d’écrire une fonction qui re-
çoit en argument une liste de chaînes, et qui renvoie une
nouvelle liste contenant les chaînes mises en majuscules.

exemple avec foreach

sub majuscules {

my @chaines = @_ ;

my @resultat ;

foreach my $chaine (@chaines) {

push @resultat , uc ($chaine);

}

return @resultat ;

}

exemple avec map

sub majuscules {

my @chaines = @_ ;

return map { uc } @chaines ;

}

Il convient d’expliquer ici que :

● La fonction uc prend en argument une chaîne de carac-
tères et la met en majuscule. Dans argument, elle utilise
la variable spéciale $_.

● map renvoie la liste résultat (sans modifier la liste origi-
nelle). Or il ne sert à rien de stocker le résultat dans un
tableau intermédiaire, autant directement le renvoyer
avec return.

Il faut bien comprendre que map construit une nouvelle
liste avec les résultats du bloc de code exécuté. Le bloc
de code n’est donc pas obligé de renvoyer toujours un
résultat, et il peut également en renvoyer plus d’un. Voici
un exemple qui supprime les nombres inférieurs à 4 d’une
liste, et pour tout autre nombre, il insère son double à la
suite.

87

i

i

“perl” — 2010/9/30 — 13:10 — page 88 — #104
i

i

i

i

i

i

CHAPITRE 4 Structures de données

my @list = map {

$_ >= 4 # si le nombre est > 4

? ($_ , 2* $_) # le nombre et son double

: () # sinon rien

} (1..5) ;

@liste contient (4 , 8, 5, 10)

Astuce

map est principalement utilisé pour créer des tableaux, mais il
peut également être utilisé pour créer des hashs. En effet, un
hash s’initialise grâce à une liste, comme dans le code suivant :

my % hash = (nom => " Jean ");

équivalent à

my % hash = (" nom " , " Jean ");

Dans cet exemple, le hash %hash est initialisé grâce à une liste
de deux chaînes, la première correspondant au nom de la clé, la
deuxième à la valeur. Cette liste peut parfaitement être la valeur
de retour d’une fonction, et donc map peut être utilisé pour créer
cette liste :

my $count = 0;

my % hash = map {

" eleve_ " . $count ++ => $_ ;

} (qw (Jean Marcel)) ;

% hash contient :

eleve_0 => " Jean "

eleve_1 => " Marcel "

Filtrer un tableau ou une liste
avec grep

grep {. . .} @tableau

88

i

i

“perl” — 2010/9/30 — 13:10 — page 89 — #105
i

i

i

i

i

i

Renvoyer le premier élément d’une liste avec List::Util

C’est le compagnon de map. grep permet de filtrer un ta-
bleau ou une liste, et renvoie une liste résultat ne conte-
nant que les éléments qui passent un test donné. En exem-
ple, voici comment filtrer les nombres d’une liste pour ne
garder que ceux inférieurs à 10 :

my @resultat = grep { $_ < 10 } @liste ;

Voici un extrait de code qui élimine tous les nombres
impairs d’une liste de nombres :

my @liste = (1..5) ;

my @resultat = grep { ! $_ % 2 } @liste

L’opérateur % calcule le modulo de deux nombres. $_ % 2

renverra donc zéro si $_ est pair. Pour garder les nombres
pairs, il faut que le test soit vrai ; il donc faut inverser le
test avec !.

Info

En plus des opérations classiques sur les listes, Perl propose un
assortiment de fonctions plus puissantes, qui ont été elles-même
complétées par un nombre important de modules disponibles sur
CPAN. Seule une sélection de deux modules éprouvés et stables
est présentée ici, List::Util et List::MoreUtils.

Renvoyer le premier élément d’une
liste avec List::Util

first(..)

Le module List::Util (disponible en standard avec Perl)
contient quelques méthodes pour travailler sur les listes,
afin d’étendre les opérateurs de base du langage.

89

i

i

“perl” — 2010/9/30 — 13:10 — page 90 — #106
i

i

i

i

i

i

CHAPITRE 4 Structures de données

first renvoie le premier élément d’une liste ou d’un ta-
bleau.

use List :: Util qw (first) ;

my $resultat = first (1..3) ;

$resultat contient 1

Trouver le plus grand élément avec
List::Util

max(..)

maxstr(..)

max renvoie le plus grand élément, en les comparant nu-
mériquement.

use List :: Util qw (max);

my $resultat = max (1 , 3, 2, 5, -2) ;

$resultat contient 5

maxstr renvoie l’élément qui a la plus grande valeur alpha-
bétique.

use List :: Util qw (maxstr);

my $resultat = maxstr (’ quelques ’,’ chaines ’);

$resultat contient ’ quelques ’;

Trouver le plus petit élément avec
List::Util

min(..)

minstr(..)

90

i

i

“perl” — 2010/9/30 — 13:10 — page 91 — #107
i

i

i

i

i

i

Réduire une liste avec List::Util

min renvoie le plus petit élément d’une liste, en les com-
parant numériquement.

use List :: Util qw (min);

my $resultat = min (1 , 3, 2, 5, -2) ;

$resultat contient -2

minstr, quant à elle, renvoie l’élément qui a la plus petite
valeur alphabétique.

use List :: Util qw (maxstr);

my $resultat = maxstr (’ quelques ’,’ chaines ’);

$resultat contient ’ chaines ’;

Réduire une liste avec
List::Util

reduce {. . .} (. . .)

Cette méthode réduit une liste, en appliquant un bloc de
code qui reçoit deux argument $a et $b. Lors de la pre-
mière évaluation, ces deux variables sont initialisées aux
deux premiers éléments de la liste. Lors des évaluations
ultérieurs, $a vaut le résultat de l’évaluation précédente,
et $b a comme valeur le prochain élément de la liste.

use List :: Util qw (reduce);

$resultat = reduce { $a * $b } (1..10)

$resultat contient le produit

des nombres de 1 à 10

91

i

i

“perl” — 2010/9/30 — 13:10 — page 92 — #108
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Mélanger une liste avec
List::Util

shuffle(..)

Il est aisé de mélanger une liste de manière pseudo-aléatoire
avec cette fonction, qui s’utilise très facilement :

use List :: Util qw (reduce);

my @tableau = (1..10) ;

my @melange = shuffle (@tableau);

Faire la somme d’une liste avec
List::Util

sum(..)

Comme son nom l’indique, sum sert simplement à faire la
somme de tous les éléments d’une liste :

use List :: Util qw (sum);

my $somme = (1..100) ;

somme vaut 5050

Savoir si un élément vérifie un
test avec List::MoreUtils

any {. . .} @tableau

La fonction any renvoie vrai si au moins un des éléments
d’une liste vérifie un test donné.

92

i

i

“perl” — 2010/9/30 — 13:10 — page 93 — #109
i

i

i

i

i

i

Tricoter un tableau avec List::MoreUtils

Savoir si aucun élément
ne vérifie un test avec
List::MoreUtils

none {. . .} @tableau

La fonction none renvoie vrai si aucun des éléments d’une
liste ne vérifie un test donné.

Appliquer du code sur deux
tableaux avec List::MoreUtils

pairwise {. . .} (@tableau1, @tableau2)

Cette fonction très utile permet d’exécuter un bloc de
code sur deux tableaux à la fois : dans le bloc de code,
les variables $a et $b prennent successivement les premiers
des éléments des deux tableaux respectivement, plus les
deuxièmes éléments, etc. jusqu’à la fin de la liste. pairwise
renvoie la liste de résultats.

Tricoter un tableau avec
List::MoreUtils

zip(@tableau1, @tableau2, . . .)

zip prend en argument un nombre quelconque de ta-
bleaux, et renvoie une liste constituée du premier élément
de chaque tableau, puis du deuxième élément de chaque
tableau, etc., jusqu’à la fin de tous les tableaux.

93

i

i

“perl” — 2010/9/30 — 13:10 — page 94 — #110
i

i

i

i

i

i

CHAPITRE 4 Structures de données

Enlever les doublons avec
List::MoreUtils

uniq(@tableau)

Cette fonction renvoie une liste contenant les éléments du
tableau passé en paramètre, mais sans les doublons.

Info

L’ordre initial des éléments est respecté dans la liste résultat.

94

i

i

“perl” — 2010/9/30 — 13:10 — page 95 — #111
i

i

i

i

i

i

5
Expressions

régulières

L’une des forces traditionnelles de Perl réside dans ses ca-
pacités d’analyse, avec en premier lieu ce véritable langage
dans le langage que sont les expressions régulières. Celles-
ci permettent de comparer une chaîne à un motif, pour
vérifier si elle correspond et éventuellement en extraire
des parties intéressantes.

Si leur syntaxe apparaît assez cryptique de prime abord,
c’est parce qu’il s’agit avant tout d’un langage très spécia-
lisé, dédié à une tâche particulière, la recherche de cor-
respondance de motifs. Larry Wall, le concepteur de Perl,
s’amusait d’ailleurs que bien que les expressions régulières
soient en partie à l’origine de la réputation de mauvaise
lisibilité de Perl, les autres langages de programmation se
sont empressés de les emprunter pour eux-mêmes.

Qu’est-ce qu’une expression régulière ?

Tout d’abord, un petit peu de théorie et d’histoire. Les expres-

sions régulières (certains préfèrent parler d’expressions ration-

nelles) sont une grammaire s’inscrivant dans le cadre de la

théorie des langages formels, qui décrit comment analyser et

i

i

“perl” — 2010/9/30 — 13:10 — page 96 — #112
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

exécuter de tels langages au travers d’automates à états finis.
Ces derniers se distinguent en automates à états finis déter-
ministes ou DFA (Deterministic Finite Automaton), s’il est pos-
sible de calculer si l’automate s’arrêtera et à quel moment, et
non déterministes ou NFA (Non-deterministic Finite Automa-

ton) dans le cas contraire.

Ken Thompson, l’un des pères du système Unix, écrivit les pre-

mières implémentations d’expressions régulières, de type DFA,

dans les éditeurs de lignes QED et ed, puis dans l’utilitaire grep

en 1973. La syntaxe d’origine (dite SRE) fut par la suite aug-

mentée et normalisée au sein de POSIX sous forme de deux

syntaxes différentes (BRE et ERE). Une implémentation de ces

expressions régulières POSIX, écrite par Henry Spencer, servit

de base pour celle de Perl, qui étendit et surtout rationalisa de

manière très importante la grammaire sous-jacente. C’est elle

qui fait maintenant office de quasi-standard, au travers de sa

réimplémentation PCRE (Perl Compatible Regular Expressions)

écrite par Philip Hazel pour le serveur de courriels Exim, et qui

est maintenant utilisée par de très nombreux logiciels.

Effectuer une recherche
m//

m// est l’opérateur de recherche (match), qui prend comme
argument une expression régulière : m/REGEXP/. Le déli-
miteur par défaut est la barre oblique (/), mais il peut être
changé par n’importe quel caractère (hormis l’espace et le
saut de ligne, pour d’évidentes raisons de lisibilité), et en
particulier par les couples de caractères suivants : m(..),

96

i

i

“perl” — 2010/9/30 — 13:10 — page 97 — #113
i

i

i

i

i

i

Rechercher et remplacer

m[..], m{..}, m<..>. Ces derniers sont très pratiques car
Perl reconnaît correctement les imbrications des caractères
identiques faisant partie de la syntaxe des expressions, et ils
permettent généralement une meilleure présentation pour
les expressions complexes sur plusieurs lignes.

Quand le délimiteur est celui par défaut, le m initial peut
être omis, d’où la forme abrégée // qui va être utilisée très
souvent dans ce chapitre.

Par défaut, m// travaille sur la variable $_, mais il suffit
d’utiliser l’opérateur de liaison =∼ pour travailler sur une
autre variable :

$string =~ / ab /;

test de $string contre le motif " ab "

Le motif peut contenir des variables, qui seront interpolées
(et le motif recompilé) à chaque évaluation.

En contexte scalaire, m// renvoie vrai si le texte corres-
pond au motif, faux sinon. En contexte de liste, il renvoie
la liste des groupes capturants ($1, $2, $3, etc.) en cas de
succès, et la liste vide sinon.

Rechercher et remplacer

s///

s/// est l’opérateur de recherche et remplacement, qui
prend comme arguments une expression régulière et une
chaîne de remplacement : s/REGEXP/REMPLACEMENT/. Com-
me pour m//, les délimiteurs peuvent être changés, avec le
petit raffinement supplémentaire qu’il est possible d’utili-
ser des paires différentes pour les deux parties de l’opéra-
teur : s{..}<..>.

97

i

i

“perl” — 2010/9/30 — 13:10 — page 98 — #114
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

s/// travaille lui aussi par défaut sur la variable $_, et
comme précédemment il suffit d’utiliser l’opérateur de
liaison =∼ pour travailler sur une autre variable :

cherche la chaîne " ab " et la remplace

par " ba "

$string =~ s / ab / ba /;

Là encore, le motif interpole les éventuelles variables qu’il
contient. La chaîne de remplacement fonctionne vérita-
blement comme une chaîne normale, et supporte donc
sans problème l’interpolation des variables, y compris celles
qui contiennent les valeurs des groupes capturants ($1, $2,
$3, etc.).

En plus des modificateurs décrits ci-après, reconnus tant
par m// que par s///, ce dernier en supporte un spécifique,
/e, qui évalue la chaîne de remplacement avec la fonction
eval. Ce n’est pas très performant, mais cela permet de
réaliser simplement certaines opérations, par exemple le
petit bout de code suivant permet de remplacer tous les
caractères encodés dans les URL par leur vraie valeur :

$string =~ s /%([A - Fa - f0 -9]{2}) / chr (hex ($1))

➥/ eg ;

Il est même possible d’évaluer le résultat obtenu en ajou-
tant un autre modificateur /e.

s/// renvoie le nombre de remplacements effectués s’il y
en a eu, faux sinon.

Stocker une expression régulière

qr//

98

i

i

“perl” — 2010/9/30 — 13:10 — page 99 — #115
i

i

i

i

i

i

Rechercher sans prendre en compte la casse

Une expression régulière peut être stockée dans une va-
riable scalaire en utilisant la syntaxe qr// :

my $re = qr / ab /;

Comme tous les q-opérateurs, il est possible de changer le
caractère délimitant la chaîne de l’opérateur. Les expres-
sions suivantes définissent la même expression régulière
que ci-dessus :

my $re = qr { ab };

my $re = qr ! ab !;

Il est alors possible de tenter une correspondance avec un
texte avec l’opérateur de liaison =∼ vu page 96 :

$text =~ $re ;

Rechercher sans prendre
en compte la casse

/i

Info

Une recherche de correspondance peut être affinée à l’aide de
modificateurs, qui s’écrivent sous la forme de simples lettres en
fin d’opérateur. Plusieurs modificateurs peuvent se combiner sans
problème d’incompatibilité.

Par défaut, la recherche s’effectue en respectant la casse
(la différence entre majuscules et minuscules). Quand ce
modificateur est activé, la recherche devient insensible à
la casse :

99

i

i

“perl” — 2010/9/30 — 13:10 — page 100 — #116
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

" BAM " =~ / bam /; # ne correspond pas

" BAM " =~ / bam /i ; # correspond

Rechercher dans une chaîne
multiligne

/m

Ce modificateur fait considérer la chaîne comme conte-
nant plusieurs lignes. En réalité, cela change le comporte-
ment des métacaractères ^ et $ (voir page 102) pour qu’ils
correspondent respectivement au début et fin des lignes
au sein de la chaîne.

Rechercher dans une chaîne
simple

/s

Ce modificateur fait considérer la chaîne comme ne com-
prenant qu’une seule ligne. En réalité, cela change le com-
portement du métacaractère point . pour qu’il corres-
ponde aussi au saut de ligne.

Malgré leur description qui semble contradictoire, les mo-
dificateurs /m et /s peuvent se combiner ensemble sans
problème : quand /ms est utilisé, cela modifie le métaca-
ractère point . pour qu’il corresponde à tout caractère, y
compris le saut de ligne, tout en autorisant les métacarac-
tères ^ et $ à correspondre après et avant les sauts de lignes
embarqués.

100

i

i

“perl” — 2010/9/30 — 13:10 — page 101 — #117
i

i

i

i

i

i

Contrôler la recherche globale de correspondances

Neutraliser les caractères espace

/x

Le modificateur de syntaxe retire toute signification aux
caractères d’espace, qui doivent alors être explicitement
écrits sous forme de métacaractères pour correspondre.
Cela permet d’écrire les expressions régulières sur plu-
sieurs lignes, avec des commentaires, ce qui est extrême-
ment pratique pour les motifs longs et complexes :

$input =~ m{

^ # début de ligne

((?:(?:(?: dis | en) abl | pag)e | status))

commande ($1)

(\+\ d +) ? # le décalage ($2)

\s+ # des espaces

(\ S +?) \.(\ S +) # serveur . sonde ($3 , $4)

\s+ # des espaces

(.*) $ # derniers arguments ($5)

} sx ;

Exemple tiré d’un module CPAN qui permet l’analyse des messages
au protocole Big Brother/Hobbit.

Contrôler la recherche globale
de correspondances

/g, /c, /gc

Le modificateur de correspondance globale /g active la
recherche globale de correspondances, c’est-à-dire que le
motif va parcourir la chaîne au fur et à mesure des corres-

101

i

i

“perl” — 2010/9/30 — 13:10 — page 102 — #118
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

pondances réussies. Pour ce faire, la position courante de
travail est normalement remise à zéro après échec, sauf si
le modificateur /c est activé.

Distinguer caractères normaux et
métacaractères

Un motif est constitué d’éléments appelés « atomes » dans
la terminologie reconnue. Les plus simples atomes d’un
motif sont les caractères normaux, qui établissent une cor-
respondance avec eux-mêmes.

" Hello world " =~ / World /; # correspond

" Hello world " =~ / lo Wo /; # correspond aussi

Il est très important de noter qu’un motif va toujours s’ar-
rêter à la première correspondance trouvée :

le " hat " de " That " correspond

" That hat is red " =~ / hat /;

Attention

Cela surprend souvent les débutants, mais le langage des ex-
pressions régulières ne permet pas naturellement de récupérer
la n-ième occurrence d’une correspondance. Bien sûr, cela peut
se contourner, de manière interne pour les cas simples, ou de
manière externe dans les cas plus complexes.

Par défaut, la casse (la distinction majuscule-minuscule)
est prise en compte, et les espaces (espace normale, tabu-
lation, retour chariot) sont considérées comme des carac-
tères normaux.

Plus précisément, est considéré comme caractère normal
tout caractère qui n’est pas un métacaractère, ces derniers

102

i

i

“perl” — 2010/9/30 — 13:10 — page 103 — #119
i

i

i

i

i

i

Distinguer caractères normaux et métacaractères

étant utilisés pour la syntaxe des expressions régulières :
{ } [] () ^ $. | * ? + \

Tout métacaractère redevient un caractère normal en le
préfixant par une barre oblique inverse \ (antislash ou back-
slash en anglais), ainsi :

" 2+2=4 " =~ /2+2/; # ne correspond pas

" 2+2=4 " =~ /2\+2/; # ok , correspond

Bien sûr, le caractère utilisé pour délimiter l’expression ré-
gulière doit lui-même être protégé afin de pouvoir être
utilisé, d’où l’intérêt de pouvoir changer le délimiteur,
afin d’éviter le syndrome de la barre oblique :

" / usr / bin / perl " =~ /\/ usr \/ bin \/ perl /;

" / usr / bin / perl " =~ m {/ usr / bin / perl };

Inversement, un caractère normal peut devenir un méta-
caractère en le préfixant par un antislash. Certains intro-
duisent des séquences d’échappement, c’est-à-dire qu’ils
prennent en argument une séquence de caractères nor-
maux. Pour une part, il s’agit en fait simplement de méta-
caractères déjà bien connus : \t pour la tabulation, \n pour
une nouvelle ligne, \xHH pour obtenir un caractère par son
code point en hexadécimal, etc.

correspond aussi (même si c ’ est bizarre)

" cat " =~ /\143\ x61 \ x74 /;

Les autres caractères, qui ne sont pas normaux, font partie
des classes de caractères (voir la section suivante).

103

i

i

“perl” — 2010/9/30 — 13:10 — page 104 — #120
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

Établir une correspondance parmi
plusieurs caractères

Une classe de caractères est un atome de longueur un qui
permet d’établir une correspondance parmi plusieurs ca-
ractères possibles. Elle est notée par des crochets [. . .]

qui encadrent les valeurs possibles. Ainsi /[bcr]at/ peut
correspondre aux chaînes « bat », « cat » et « rat ».

Comme il serait fastidieux d’écrire l’ensemble des lettres,
il est possible de définir des intervalles de caractères en
mettant un tiret « - » entre les deux bornes. Ainsi [0-9]
est équivalent à [0123456789], et [b-n] à [bcdefghijklmn].
L’expression /[0-9a-fA-F] permet donc de chercher un
caractère hexadécimal.

Dernier point de la syntaxe des classes de caractères, la
négation d’une classe, qui s’active en préfixant par l’accent
circonflexe ^. /[^0-9]/ correspond à tout caractère qui
n’est pas un chiffre.

Comme certaines classes sont très courantes, elles sont pré-
définies dans les expressions régulières. La plus simple est
le métacaractère point . qui correspond à tout caractère
sauf le saut de ligne :

" a =3 " =~ /.../; # correspond

Il est bon de se souvenir que cela peut se modifier avec le
modificateur /s :

" krack \ nboum " =~ / krack . boum /; # ne corr . pas

" krack \ nboum " =~ / krack . boum /s; # correspond

Il existe deux syntaxes pour utiliser les autres classes prédé-
finies. L’une, introduite par Perl, est courte et correspond
aux métacaractères qui ont été laissés en suspens, de la

104

i

i

“perl” — 2010/9/30 — 13:10 — page 105 — #121
i

i

i

i

i

i

Établir une correspondance parmi plusieurs caractères

forme antislash plus un caractère minuscule, avec la forme
majuscule qui correspond à sa négation :

● \w (comme word character) correspond à un caractère de
« mot », c’est-à-dire tout alphanumérique plus l’espace
soulignée (_), et \W à tout caractère qui n’est pas un mot.

● \d (comme digit) correspond à un chiffre, et \D à tout ce
qui n’est pas un chiffre :

/\ d\d :\ d\d :\ d \d /;

format d ’ heure hh : mm : ss

● \s (comme space) correspond à tout caractère considéré
comme un espace blanc (fondamentalement, la tabula-
tion, l’espace usuelle et les sauts de ligne et de page), et
\S à tout caractère qui n’est pas considéré comme un
espace blanc.

L’autre syntaxe, dite POSIX, est de la forme [:classe:],
à utiliser au sein d’une classe, dont la syntaxe complète
est [[:classe:]]. Perl permet de plus de créer les néga-
tions de ces classes par [^[:classe:]]. La liste des classes
reconnues est :

● [[:alpha:]] correspond à tout caractère alphabétique,
par défaut [A-Za-z] ;

● [[:alnum:]] correspond à tout caractère alphanumérique,
par défaut [A-Za-z0-9] ;

● [[:ascii:]] correspond à tout caractère dans le jeu de
caractères ASCII ;

● [[:blank:]] une extension GNU qui correspond à l’es-
pace usuelle et à la tabulation ;

● [[:cntrl:]] correspond à tout caractère de contrôle ;

● [[:digit:]] correspond à tout caractère considéré comme
un chiffre, équivalent à \d ;

● [[:graph:]] correspond à tout caractère imprimable, à
l’exclusion des espaces ;

105

i

i

“perl” — 2010/9/30 — 13:10 — page 106 — #122
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

● [[:lower:]] correspond à tout caractères minuscule, par
défaut [a-z] ;

● [[:print:]] correspond à tout caractère imprimable, y
compris les espaces ;

● [[:punct:]] correspond à tout caractère de ponctua-
tion, c’est-à-dire tout caractère imprimable à l’exclusion
des caractères de mot ;

● [[:space:]] correspond à tout caractère d’espace, équi-
valent à \s plus la tabulation verticale \cK ;

● [[:upper:]] correspond à tout caractère majuscule, par
défaut [A-Z] ;

● [[:word:]] est une extension Perl équivalente à \w ;

● [[:xdigit:]] correspond à tout caractère hexadécimal.

Il faut noter que, au sein d’une classe de caractères, la plu-
part des métacaractères de la syntaxe des expressions ré-
gulières perdent leur signification, hormis ceux qui cor-
respondent à des caractères (comme \t et \n) et ceux qui
correspondent à des classes (comme \d).

Ancrer une expression régulière
en début de ligne

^

Info

Les ancres sont des assertions de longueur nulle qui permettent,
comme leur nom l’indique, d’ancrer la recherche en certains points
de la chaîne, afin d’imposer des contraintes au motif pour, par
exemple, limiter ou au contraire étendre sa portée d’exécution.

106

i

i

“perl” — 2010/9/30 — 13:10 — page 107 — #123
i

i

i

i

i

i

Ancrer une expression régulière en fin de ligne

L’ancre ^ permet d’accrocher le motif en début de ligne :

" beausoleil " =~ /^ soleil /; # ne corresp . pas

" beausoleil " =~ /^ beau /; # correspond

Par défaut, ^ garantit de ne correspondre qu’en début de
chaîne, y compris si celle-ci comporte des sauts de ligne
internes. Pour que cette ancre corresponde en plus après
chaque saut de ligne, il suffit d’utiliser le modificateur /m :

" un \ ndeux \ ntrois " =~ /^ deux /m; # correspond

Ancrer une expression régulière
en fin de ligne

$

L’ancre $ permet d’accrocher le motif en fin de ligne :

" beausoleil " =~ / beau$ /; # ne corresp . pas

" beausoleil " =~ / soleil$ /; # correspond

Comme pour ^, $ garantit par défaut de ne correspondre
qu’en fin de chaîne, et il faut utiliser le modificateur /m

pour qu’elle corresponde en plus avant chaque saut de
ligne interne :

" un \ ndeux \ ntrois " =~ / deux$ /m; # correspond

107

i

i

“perl” — 2010/9/30 — 13:10 — page 108 — #124
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

Utiliser une ancre de début
de chaîne

\A

\A est comme ^ une ancre de début de chaîne, sauf qu’elle
n’est pas affectée par le modificateur /m.

Utiliser une ancre de fin
de chaîne

\Z, \z

\Z est comme $ une ancre de fin de chaîne, sauf qu’elle
n’est pas affectée par le modificateur /m. Comme \Z peut
tout de même correspondre juste avant un saut de ligne
final, il existe aussi \z qui garantit de ne correspondre qu’à
la fin physique de la chaîne.

Utiliser une ancre de frontière
de mot

\b

L’ancre \b (boundary) est conçue pour correspondre à la
frontière d’un mot, qui intervient entre un \w et un \W.

" beausoleil " =~ /\ bbeau /; # correspond

" beausoleil " =~ /\ bbeau \ b /; # ne corres . pas

" beausoleil " =~ /\ bsoleil /; # ne corres . pas

108

i

i

“perl” — 2010/9/30 — 13:10 — page 109 — #125
i

i

i

i

i

i

Utiliser une ancre de correspondance globale

Utiliser une ancre par préfixe
de recherche

\K

L’ancre \K (comme keep), introduite avec Perl 5.10 et au-
paravant par le module CPAN Regexp::Keep, permet de
positionner la recherche de correspondance en un point
précis de la chaîne examinée. Plus précisément la partie à
gauche de cette assertion est un motif de recherche pure,
utilisé seulement pour le positionnement. La principale
utilité de cette assertion est d’offrir une solution plus ef-
ficace à un cas courant d’utilisation de s///, l’effacement
d’un morceau de texte repéré par un préfixe particulier
qui est à conserver :

$text =~ s /(préfixe) texte à supprimer / $1 /;

se réécrit :

$text =~ s / préfixe \ Ktexte à supprimer //;

qui est un peu plus clair, mais est surtout deux fois plus
rapide à s’exécuter.

Utiliser une ancre de
correspondance globale

\G pos()

L’ancre \G ne correspond qu’à la position courante du mo-
tif dans la chaîne, qui peut s’obtenir et se modifier par la
fonction pos().

109

i

i

“perl” — 2010/9/30 — 13:10 — page 110 — #126
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

$str = " abcdef " ;

$str =~ / cd / g;

say pos ($str); # affiche 4

Cette ancre s’utilise typiquement sous la forme idioma-
tique m/\G. . ./gc pour écrire des analyseurs bas niveau
de type lex. Il n’est pas utile de s’attarder davantage sur ce
point car il existe des modules CPAN permettant de réa-
liser des analyses syntaxiques et grammaticales de manière
plus aisée. Par exemple Parse::Yapp (un peu vieux mais
toujours utile) qui offre un fonctionnement de type yacc,
et Marpa qui supporte des grammaires de type EBNF. Éga-
lement les deux modules de Damian Conway, Parse::-
RecDescent et le récent Regexp::Grammars qui rend obso-
lète le premier et permet d’écrire des grammaires arbitrai-
rement complexes.

Unicode et locales

Il n’est pas possible d’aborder ici en détail les problèmes liés
à Unicode car il faudrait un livre entier dédié à ce sujet pour
le couvrir de manière correcte ; voici cependant un rappel des
bases.

Unicode est une norme qui constitue un catalogue des cen-
taines de milliers de caractères des écritures du monde entier,
de leurs propriétés associées et de leurs règles d’utilisation.
Au-delà de notre alphabet romain si familier, et même des
alphabets proches comme le grec ou le cyrillique, il existe de
nombreux systèmes d’écritures qui obéissent à des règles tota-
lement différentes. Par exemple les systèmes hébreu et arabe
s’écrivent de droite à gauche. Les caractères arabes ont diffé-
rentes variantes en fonction de leur position dans un mot. Les
syllabaires japonais et les idéogrammes chinois n’ont pas de

110

i

i

“perl” — 2010/9/30 — 13:10 — page 111 — #127
i

i

i

i

i

i

Quantifieur *

notion de casse. Plusieurs systèmes d’écritures possèdent leurs
propres définitions de chiffres. Sans compter les centaines de
symboles techniques et mathématiques.

Le moteur d’expressions régulières de Perl supporte sans pro-
blème l’analyse de chaînes en Unicode (dans le format interne
de Perl qui est une variation de UTF-8), mais ce support im-
plique des comportements, spécifiés dans la norme Unicode,
qui peuvent surprendre l’utilisateur non averti. Ceux-ci s’ac-
tivent typiquement par le chargement des locales qui changent
certaines définitions comme les caractères qui constituent un
mot (\w), les caractères considérés comme des chiffres (\d), et
même les caractères considérés comme des espaces (\s). Ainsi,
si la locale française va inclure les caractères diacritiques (é,
à, ù, etc.) dans les caractères de mot (\w), ce n’est pas le cas
d’une locale anglaise.

En résumé, devant un comportement curieux avec une expres-

sion régulière, il est souvent utile de vérifier l’environnement

et le type des données sur lesquelles l’expression est testée.

Quantifieur *
x*

Info

Les quantifieurs permettent la répétition d’un sous-motif, pour
que celui-ci établisse une correspondance multiple de ses atomes
avec la chaîne examinée.

Le quantifieur * établit une correspondance de zéro ou
plusieurs fois :

111

i

i

“perl” — 2010/9/30 — 13:10 — page 112 — #128
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

" krack " =~ / kra * ck /; # correspond

" kraaack " =~ / kra * ck /; # correspond

" krck " =~ / kra * ck /; # correspond

Le dernier exemple montre bien que le sous-motif peut
réussir en correspondant zéro fois.

Quantifieur +
x+

Le quantifieur + établit une correspondance de une ou
plusieurs fois :

" krack " =~ / kra + ck /; # correspond

" kraaack " =~ / kra + ck /; # correspond

" krck " =~ / kra + ck /; # ne corres . pas

" item04 " =~ /\ w +/; # correspond

" Kevin68 " =~ /\ w +/; # correspond

" srv - http " =~ /\ w +/; # ne corres . pas

recherche simpliste d ’ une adresse IPv4

/\ d +\.\ d +\.\ d +\.\ d +/;

recherche simpliste d ’ une adresse mail

/ <[-.\ w]+\ @ [-.\ w]+ >/;

Quantifieur ?
x?

Le quantifieur ? établit une correspondance de zéro ou
une fois, c’est-à-dire qu’il rend le sous-motif optionnel :

112

i

i

“perl” — 2010/9/30 — 13:10 — page 113 — #129
i

i

i

i

i

i

Quantifieur {n,m}

" krack " =~ / kra ? ck /; # correspond

" kraaack " =~ / kra ? ck /; # ne corres . pas

" krck " =~ / kra ? ck /; # correspond

Quantifieur {n}

x{n}

Le quantifieur {n} établit une correspondance d’exacte-
ment n fois :

" krack " =~ / kra {2} ck /; # ne corresp . pas

" kraack " =~ / kra {2} ck /; # correspond

" kraaack " =~ / kra {2} ck /; # ne corresp . pas

Quantifieur {n,m}

x{n,m}

Le quantifieur {n,m} établit une correspondance entre n et
m fois :

" krack " =~ / kra {2 ,4} ck /; # ne corr . pas

" kraaack " =~ / kra {2 ,4} ck /; # correspond

" kraaaaack " =~ / kra {2 ,4} ck /; # ne corr . pas

La borne supérieure m peut ne pas être précisée, auquel cas
la correspondance essayera de s’établir au moins n fois :

" kraaack " =~ / kra {5 ,} ck /; # ne corres . pas

" kraaaaack " =~ / kra {5 ,} ck /; # correspond

113

i

i

“perl” — 2010/9/30 — 13:10 — page 114 — #130
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

Quantifieurs non avides
x*? x+? x*?? x{n}? x{n,m}?

Un point important à noter est que les quantifieurs précé-
dents sont dits avides et tentent d’établir la correspondance
la plus grande possible avec les caractères de la chaîne
cible. Voici un exemple typique des débutants :

" < img src = " ... " >"

➥=~ / <.+ >/;

Tout d’abord, essayer d’analyser du HTML (ou du XML)
avec des expressions régulières, c’est « mal et ça ne marche
pas ». Dans ce cas-ci, l’utilisateur voulait capturer le pre-
mier élément <a>, mais le comportement avide de l’ex-
pression fait que c’est en réalité l’ensemble des caractères
jusqu’au > du qui sont pris en compte.

Il existe donc une variation des quantifieurs qui permet
de les rendre non avides, pour qu’ils tentent d’établir une
correspondance au plus tôt :

● *? zéro ou plusieurs fois, au plus tôt ;

● +? une ou plusieurs fois, au plus tôt ;

● ?? zéro ou une fois, au plus tôt ;

● {n}? exactement n fois, au plus tôt ;

● {n,}? au moins n fois, au plus tôt ;

● {n,m}? entre n et m fois, au plus tôt.

L’exemple précédent, corrigé pour devenir non avide, de-
vient /<.+?>/. Il est aussi possible d’utiliser une classe qui
exclut le caractère terminal, donc ici /<[^>]+>/.

Il faut se souvenir que là, plus encore qu’avant, le motif
va terminer dès qu’une correspondance est trouvée.

114

i

i

“perl” — 2010/9/30 — 13:10 — page 115 — #131
i

i

i

i

i

i

Quantifieurs possessifs

" aaaa " =~ /a +?/; # correspond avec " a"

" aaaabbbb " =~ /a +? b *?/; # correspond avec " a"

" aaaabbbb " =~ /a +? b +?/; # correspond avec

" aaaab "

Quantifieurs possessifs

x*? x+? x*?? x{n}? x{n,m}?

Pour répondre à des cas assez spécifiques, il existe encore
une autre variation des quantifieurs qui fonctionnent de
manière semblable aux quantifieurs avides mais n’effec-
tuent jamais de retour arrière dans la recherche de corres-
pondance. On parle de quantifieurs possessifs, ou encore
de groupement atomique :

● *+ zéro ou plusieurs fois, et ne rend jamais,

● ++ une ou plusieurs fois, et ne rend jamais,

● ?+ zéro ou une fois, et ne rend jamais,

● {n}+ exactement n fois, et ne rend jamais,

● {n,}+ au moins n fois, et ne rend jamais,

● {n,m}+ entre n et m fois, et ne rend jamais.

Voici un petit exemple qui permet de comprendre les dif-
férences entre les différents types de quantifieurs :

avide : /a +/ correspond avec " aaa "

" aaaa " =~ /a +a /;

non avide : / a +?/ correspond avec "a"

" aaaa " =~ /a +? a /;

possessif : / a ++/ ne correspond pas

" aaaa " =~ /a ++ a /;

115

i

i

“perl” — 2010/9/30 — 13:10 — page 116 — #132
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

/a++/ ne correspond pas car le motif essaye d’abord de
réaliser une correspondance avec les quatre caractères “a”,
mais le dernier est nécessaire pour correspondre avec le
second caractère atome “a” du motif. D’où échec du mo-
tif, et comme il s’agit d’un quantifieur possessif, il n’y a
pas de tentative de retour arrière, comme le fait le quanti-
fieur avide qui revient d’une position en arrière, essaye de
correspondre avec trois caractères a et réussit.

Capturer du texte avec les groupes
capturants

(. . .)

Les motifs permettent de rechercher des données au sein
d’un texte. C’est un bon début, mais en l’état, difficile
d’en faire quelque chose de véritablement utile. . . En par-
ticulier, il manque un moyen pour récupérer les don-
nées intéressantes dans une variable, voire dans plusieurs
variables différentes quand le motif permet d’extraire la
structure des données du texte. Les groupes capturants ré-
pondent à ce problème.

Leur principale fonction est de pouvoir créer des élé-
ments complexes à partir de plusieurs atomes. Leur se-
conde fonction est, par défaut, de capturer le texte qui a
correspondu au sous-motif du groupe. La syntaxe est très
simple, il suffit de mettre un sous-motif entre parenthèses
(. . .) pour créer un groupe capturant.

" abcdefgh " =~ / b(cd)e /; # capture " cd "

" abcdefgh " =~ /\ w (\ w +) \w /; # capture " bcdefg "

Pour se référer au texte capturé, il suffit d’utiliser les formes
\1, \2, \3. . ., nommées références arrières au sein même de

116

i

i

“perl” — 2010/9/30 — 13:10 — page 117 — #133
i

i

i

i

i

i

Capturer du texte avec les groupes capturants

l’expression, et les variables $1, $2, $3, etc. à l’extérieur.

recherche d ’un mot répété

if ($string =~ /(\ w +) +\1/) {

print " mot répété : $1 ";

}

Noter que ces dernières ne sont définies que dans le bloc
courant et sont évidemment réinitialisées dès l’évaluation
suivante de la même expression ou d’une autre expression.
La durée de vie de ces variables étant donc assez courte, il
est préférable de rapidement copier leurs valeurs dans des
variables à soi.

exemple de lecture d ’un fichier

de configuration

while ($line = <$fh >) {

if ($line =~ /^(\ w +) \ s *=\ s *(.*) $ /) {

$param { $1 } = $2 ;

}

}

Quand c’est possible, il est préférable d’affecter directe-
ment des variables destination par une assignation de liste :

while ($line = <$fh >) {

if (my ($name , $value) =

$line =~ /^(\ w +) \ s *=\ s *(.*) $ /) {

$param { $name } = $value ;

}

}

La numérotation des captures se fait logiquement de gauche
à droite, en comptant les parenthèses ouvrantes, y compris
pour les groupes imbriqués :

" abcdefgh " =~ /(b(cd) e) .+(g) /;

print " $1 : $2 : $3 ";

affiche " bcde : cd : g "

117

i

i

“perl” — 2010/9/30 — 13:10 — page 118 — #134
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

Comme l’utilisation des références arrières numérotées po-
sait des problèmes de syntaxe, tant au niveau de la cohé-
rence que de la lisibilité, une nouvelle syntaxe a été in-
troduite avec Perl 5.10, plus souple et sans ambiguïté :
\g{N}, où N peut être un nombre positif, auquel cas cela
correspond au numéro habituel (absolu) de la capture, ou
négatif, qui permet un référencement arrière relatif. Car
c’est un des gros problème de la syntaxe classique des ré-
férences arrières, elles sont absolues, ce qui complique la
construction d’expressions régulières complexes à partir de
morceaux séparés, si ceux-ci veulent utiliser des références
arrières, puisqu’il faut alors connaître le nombre global de
captures. La nouvelle syntaxe permet de récupérer le texte
capturé de manière relative, permettant à chaque morceau
de rester indépendant. L’exemple précédent de recherche
de mot répété devient alors :

recherche d ’un mot répété

if ($string =~ /(\ w +) +\ g { -1}/) {

print " mot répété : $1 ";

}

Mieux, il est aussi possible de nommer les captures, avec
la syntaxe (?<nom>motif) et de s’y référer avec \g{nom} ou
\k<nom>. Les syntaxes PCRE et Python sont aussi suppor-
tées pour rendre plus aisée la réutilisation d’expressions
régulières venant d’horizons variés. Ceci facilite encore
la modularisation sous forme de morceaux contenant des
motifs spécialisés :

my $find_dup = qr { (? < dup_word >\ w +) \s+ \g {

dup_word } }x ;

Pour récupérer les valeurs correspondantes en dehors de
l’expression, il faut utiliser les variables lexicales %+ et %- :
$+{nom} fournit la même valeur que \g{nom}, et $-{nom}
la référence vers un tableau de toutes les captures de ce

118

i

i

“perl” — 2010/9/30 — 13:10 — page 119 — #135
i

i

i

i

i

i

Grouper sans capturer avec les groupes non capturants

nom. Les noms de ces hashs, certes courts mais aussi peu
explicites, peuvent être remplacés par des noms plus clairs,
grâce au module Tie::Hash::NamedCapture :

use Tie :: Hash :: NamedCapture ;

tie my % last_match , " Tie :: Hash :: Named

➥Capture " ;

% last_match se comporte maintenant

comme %+

tie my % reg_buffer ," Tie :: Hash :: Named

➥Capture " , all => 1;

% reg_buffer se comporte maintenant

comme %-

Bien sûr, les captures nommées restent aussi accessibles par
leur numéro.

Grouper sans capturer avec
les groupes non capturants

(?:. . .)

L’utilisation de groupes capturants est très pratique, mais
impose aussi un coût non négligeable étant donné qu’il
faut nécessairement mettre en place une mécanique in-
terne pour récupérer et stocker le texte qui a correspondu.
C’est pourquoi il est aussi possible de créer des groupes
non capturants avec la syntaxe (?:. . .). Cet exemple
illustre l’intérêt de pouvoir grouper sans capturer :

recherche simple d ’ une adresse IPv4

/((?:\ d +\.) {3} \d +) /x;

119

i

i

“perl” — 2010/9/30 — 13:10 — page 120 — #136
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

Le groupe non capturant permet de créer un sous-motif
attendant plusieurs chiffres suivi d’un point, sous-motif ré-
pété trois fois afin de correspondre aux trois premières
composantes de l’adresse IP, suivi enfin de la dernière
composante. Les composantes individuelles ne sont pas in-
téressantes ici, car c’est l’adresse IPv4 dans son entier qui
est voulue, d’où le groupe capturant qui englobe le tout.

Point intéressant, il est possible de positionner des modi-
ficateurs locaux au seul groupe :

désactivation locale de / x

m {

... # expression régulière complexe

... # qui ne sera pas détaillée ici

(? - x :...) # une ligne où /x

n ’ est pas désiré

... # et ici , retour au mode /x

} x;

Il est aussi possible de désactiver un modificateur en le fai-
sant précéder par le signe moins (-), ainsi que de grouper
plusieurs modificateurs :

activation locale de / s et désactivation

de /i

m /(? s -i :...) ../ i;

Il ne faut donc pas hésiter à utiliser les groupes non cap-
turants, leur coût à l’exécution étant négligeable.

Définir des alternatives
(..|..)

(? |..|..)

120

i

i

“perl” — 2010/9/30 — 13:10 — page 121 — #137
i

i

i

i

i

i

Définir des alternatives

Dernier point important de la syntaxe des expressions qui
n’a pas encore été abordé, les alternatives, qui consistent à
créer des branches de correspondance possible au sein de
l’expression en les séparant avec le caractère barre verticale
|. Détail qui a son importance, les branches s’étendent le
plus possible, jusqu’aux bords de l’expression régulière ou
du groupe qui l’englobe.

Ainsi /^krack|clonk$/ doit se comprendre comme « cher-
cher “krack” en début de ligne, ou “clonk” en fin de
ligne ». Pour obtenir un comportement du type « cher-
cher un mot unique sur la ligne qui est soit “krack”,
soit “clonk” », il faut placer l’alternative dans un groupe :
/^(?:krack|clonk)$/

Par exemple, une expression pour commencer un début
de support des arguments de la commande Linux ip serait :

/^(addr (?: ess) ?| route | rule | table)

➥+(add | del | list)/

À l’exécution, les alternatives sont essayées dans l’ordre,
de gauche à droite. La première qui réussit valide l’alter-
native.

Un problème survient lors de l’utilisation des alternatives
quand les branches elles-mêmes contiennent des captures.
Comme expliqué dans la partie sur les captures, celles-
ci sont numérotées en comptant la parenthèse ouvrante
de chaque groupe, en partant de la gauche. Pour des cas
un peu complexes, cela peut donner un résultat assez cu-
rieux :

/ (a) (?: x (y) z | (p (q) r) | (t) u (v)) (z) / x

1 2 3 4 5 6 7

121

i

i

“perl” — 2010/9/30 — 13:10 — page 122 — #138
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

Suivant la branche qui aura correspondu, il faudra regarder
des variables différentes : $2 pour la première, $3 et $4

pour la seconde, $5 et $6 pour la troisième. Pas forcément
très pratique.

C’est pourquoi une nouveauté a été introduite en Perl
5.10, la remise à zéro de branche (branch reset), un nouveau
type de groupe non capturant qui se déclare avec la syn-
taxe (?|..). Les captures de chaque branche de l’alterna-
tive sont alors numérotées comme s’il n’y avait qu’une
seule branche :

avant --- remise à zéro de branche -- après

/ (a) (?| x (y)z | (p (q) r) | (t) u (v)) (z) / x

1 2 2 3 2 3 4

L’intérêt est qu’il suffit maintenant de regarder la valeur
d’une seule variable, $2, pour savoir quelle branche a cor-
respondu.

Bien sûr, il est aussi possible de résoudre ce genre de
problèmes avec des captures nommées à la place, mais
avec l’inconvénient d’une expression plus verbeuse. C’est
même probablement préférable dans de nombreux cas étant
donné que des champs nommés sont plus faciles à com-
prendre quand il s’agit de relire le code que des champs
numérotés.

Découper une chaîne avec split

split(/MOTIF/, CHAINE, LIMITE)

La fonction split permet de séparer une chaîne en plu-
sieurs éléments, délimités par le motif fourni en premier
argument. Ainsi, pour récupérer les champs des lignes du
fichier /etc/passwd, séparés par des caractères deux-points :

122

i

i

“perl” — 2010/9/30 — 13:10 — page 123 — #139
i

i

i

i

i

i

Découper une chaîne avec split

my @fields = split /:/ , $line ;

Les éventuels champs vides intermédiaires sont conser-
vés, mais les derniers sont éliminés. Si la limite est spé-
cifiée (sous forme d’un nombre positif), cela représente le
nombre maximum d’éléments dans lesquels se découpe la
chaîne :

les 4 premiers champs , puis le reste

de la ligne

my @fields = split /:/ , $line , 5;

Plus intéressant, split fonctionne de manière naturelle :

my ($login , $password) = split /:/ , $line ;

Dans un tel cas, inutile d’indiquer la limite car split dé-
tecte qu’il s’agit d’une assignation à une liste de variables,
et positionne automatiquement la limite au nombre de
variables plus un, afin de jeter le reste non utilisé. Si le
comportement contraire est souhaité, il suffit de spécifier
la limite :

my ($login , $password , $rest) = split /:/ ,

➥$line , 3;

Le motif peut bien sûr faire plus d’un caractère de long :

moyen très rapide de lire un fichier de

configuration de type clé = valeur et de

stocker ses paramètres dans un hash

chomp (my @lines = grep { !/^ $ |^\ s *#/ }

➥< $config_fh >) ;

my % config = map { split /\ s *=\ s */ , $_ , 2 }

➥@lines ;

123

i

i

“perl” — 2010/9/30 — 13:10 — page 124 — #140
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

Si le motif contient des captures, des champs supplémen-
taires seront créés pour chacune, avec la valeur en cas de
correspondance, undef sinon.

Il est possible de fournir la chaîne “ “ (une seule espace) à
la place du motif, qui se comporte comme le motif /\s+/
sauf que les éventuels éléments vides en début de la liste
résultat sont supprimés, afin d’émuler le comportement
par défaut de awk.

Si aucune chaîne n’est fournie en argument, split tra-
vaillera sur $_. Si ni la chaîne, ni le motif ne sont fournis,
donc si on appelle split sans aucun argument, c’est équi-
valent à split(” “, $_).

Utiliser Regexp::Common

use Regexp::Common

Regexp::Common est un des module CPAN assistant les uti-
lisateurs dans la manipulation d’expressions régulières.

Originellement écrit par Damian Conway, il fait office de
bibliothèque d’expressions régulières répondant à des be-
soins courants. Son interface principale est un peu baroque
et passe principalement par un hash magique %RE. Ainsi
$RE{num}{real} est l’expression pour tester si un nombre
est un réel, et $RE{net}{IPv4} celle pour tester si la chaîne
contient bien une adresse IPv4. Les expressions sont im-
plémentées sous forme de modules, ce qui permet de fa-
cilement étendre Regexp::Common avec ses propres expres-
sions.

Ce qui rend Regexp::Common plus intéressant est que ces
expressions sont paramétrables et acceptent des options.
Deux sont communes à toutes, -keep pour réaliser des

124

i

i

“perl” — 2010/9/30 — 13:10 — page 125 — #141
i

i

i

i

i

i

Utiliser Regexp::Common

captures et -i pour travailler de manière insensible à la
casse.

use Regexp :: Common ;

if ($string =~ $RE { num }{ int }{ - keep }) {

$number = $1 ;

$sign = $2 ;

}

Les autres options sont spécifiques à chaque expression.
Par exemple le module number supporte une option -base

pour indiquer la base numérique des nombres :

nombres réels en binaire

$RE { num }{ real }{ - base => 2}

nombres entier en base 5

$RE { num }{ int }{ - base => 5}

et il supporte même les nombres romains avec $RE{num}-

{roman}.

L’intérêt de Regexp::Common est d’une part de fournir des
expressions régulières correctes pour des besoins courants :

given ($host) {

when (" localhost ") { say " adresse locale " }

when (/ $RE { net }{ IPv4 }/) { say " adresse IPv4 " }

when (/ $RE { net }{ domain }/) { say " nom d ’ hôte " }

default { say " type d ’ argument inconnu " }

}

mais aussi des expressions pour des besoins moins courants
et sur lesquels il est assez facile de se tromper, comme
l’extraction de chaînes encadrées par des guillemets.

Le dernier point à noter avec Regexp::Common est que s’il
peut sembler trop gros à charger pour certains usages, il est
parfaitement possible de sauver l’expression régulière dé-
sirée quelque part pour s’en servir de manière autonome.

125

i

i

“perl” — 2010/9/30 — 13:10 — page 126 — #142
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

Utiliser Regexp::Assemble

use Regexp::Assemble

Regexp::Assemble est un module écrit par David Land-
gren pour réaliser l’assemblage de sous-motifs afin de créer
une grande expression régulière partiellement optimisée.
Il l’avait écrit à l’origine pour assembler des adresses d’émet-
teurs de pourriel et fournir ainsi une seule grosse expres-
sion à Postfix, qui supporte les expressions régulières grâce
à PCRE. Ainsi, à partir d’un grand nombre d’adresses
comme celles-ci,

64-80-231-201.fibertel.com.ar

host-67-84-230-24.midco.net

host-89-229-2-176.torun.mm.pl

host-213-213-233-44.brutele.be

ppp-58.10.219.243.revip2.asianet.co.th

68-67-200-36.atlaga.adelphia.net

il est facile d’en déduire des motifs simples qui y corres-
pondent, ainsi qu’aux adresses voisines :

\ d + -\ d + -\ d + -\ d +\. fibertel \. com \. ar

host -\ d + -\ d + -\ d + -\ d +\. midco \. net

host -\ d + -\ d + -\ d + -\ d +\. torun \. mm \. pl

host -\ d + -\ d + -\ d + -\ d +\. brutele \. be

ppp -\ d +\.\ d +\.\ d +\.\ d +\. revip \ d +\. asianet

➥\. co \. th

\ d + -\ d + -\ d + -\ d +\. atlaga \. adelphia \. net

Regexp::Assemble permet de réunir tous ces motifs, mais
surtout le fait de manière intelligente en réalisant des grou-
pements de préfixes partout où c’est possible :

126

i

i

“perl” — 2010/9/30 — 13:10 — page 127 — #143
i

i

i

i

i

i

Utiliser Regexp::Assemble

(?:

host -\ d + -\ d + -\ d + -\ d +\.

(?:

torun \. mm \. pl

| brutele \. be

| midco \. net

)

|\ d + -\ d + -\ d + -\ d +\.

(?:

atlaga \. adelphia \. net

| fibertel \. com \. ar

)

| ppp -\ d +\.\ d +\.\ d +\.\ d +\. revip \d +\.

asianet \. co \. th

)

Pour prendre un exemple plus court et plus simple :

use Regexp :: Assemble ;

my $ra = Regexp :: Assemble -> new ;

$ra -> add (" cra + ck " , " cru + nch " , " clu + n+ ck ");

print $ra -> re ;

affiche "(? - xism :c (?: r (?: u+ nch | a+ ck)|

➥lu + n+ ck))"

Il faut noter que Regexp::Assemble ne peut véritablement
assembler que des motifs comprenant des atomes simples,
donc sans groupes internes. Mais même ainsi, il permet
des gains sensibles de performance, et propose aussi de très
intéressantes options pour par exemple suivre les branches
qui établissent les correspondances, ce qui constitue une
outil de déboggage très utile.

127

i

i

“perl” — 2010/9/30 — 13:10 — page 128 — #144
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

Utiliser Text::Match::FastAlterna-
tives

use Text::Match::FastAlternatives

Text::Match::FastAlternatives est un module écrit par
Aaron Crane alors qu’il travaillait pour le site The Regis-
ter, où il maintenait un outil d’analyse de logs de plusieurs
dizaines de gigaoctets, d’où des besoins de performances
assez importants. Ce module est fondamentalement un
moyen d’avoir l’équivalent d’un idiome assez courant dans
ce cas, qui est de créer une liste d’alternatives ainsi :

my $re = join " |" , @words ;

C’est facile à écrire, mais peu performant, et de plus cela
n’utilise pas vraiment les expressions régulières. Text::-

Match::FastAlternatives fournit un moyen de chercher
la présence d’une sous-chaîne dans un texte, et ce bien
plus efficacement puisqu’il est environ 90 fois plus rapide
que l’expression régulière équivalente.

Utiliser YAPE::Regex::Explain

use YAPE::Regex::Explain

YAPE::Regex::Explain peut s’avérer utile pour qui a en-
core un peu de mal avec la syntaxe des expressions régu-
lières, car ce module permet d’expliquer une expression
en termes clairs, malheureusement seulement en anglais.
Ainsi le code suivant :

128

i

i

“perl” — 2010/9/30 — 13:10 — page 129 — #145
i

i

i

i

i

i

Utiliser YAPE::Regex::Explain

use YAPE :: Regex :: Explain ;

my $re = qr /^(\ w +) \s *=\ s *(.*) $ /;

my $ex = YAPE :: Regex :: Explain -> new ($re) ;

print $ex -> explain ;

affiche cette explication, assez verbeuse :

The regular expression:

(?-imsx:^(\w+)\s*=\s*(.*)$)

matches as follows:

NODE EXPLANATION

(?-imsx: group, but do not capture (case-sensitive)

(with ^ and $ matching normally) (with . not

matching \n) (matching whitespace and #

normally):

^ the beginning of the string

(group and capture to \1:

\w+ word characters (a-z, A-Z, 0-9, _) (1 or

more times (matching the most amount

possible))

) end of \1

\s* whitespace (\n, \r, \t, \f, and " ") (0 or

more times (matching the most amount

possible))

= ’=’

\s* whitespace (\n, \r, \t, \f, and " ") (0 or

more times (matching the most amount

possible))

(group and capture to \2:

.* any character except \n (0 or more times

(matching the most amount possible))

) end of \2

129

i

i

“perl” — 2010/9/30 — 13:10 — page 130 — #146
i

i

i

i

i

i

CHAPITRE 5 Expressions régulières

$ before an optional \n, and the end of the

string

) end of grouping

Il ne gère par ailleurs qu’une partie réduite de la syntaxe,
et les ajouts récents comme les quantifieurs possessifs ne
sont pas pris en compte.

Autres références

Seules les bases des expressions régulières ont été abordées
ici. Si celles-ci sont relativement simples à appréhender, elles
constituent pourtant un domaine véritablement complexe à
maîtriser dans ses détails. Le lecteur désireux de mieux appro-
fondir ses connaissances pourra se référer à la page du ma-
nuel Perl consacrée aux expressions régulières, perlre, lisible en
ligne à l’adresse http://perldoc.perl.org/perlre.html, en anglais
et un peu aride, mais à jour avec les dernières nouveautés.

Par ailleurs, le livre Mastering Regular Expression, 2nd Ed de
Jeffrey Friedl (O’Reilly 2002, ISBN 0-596-00289-0) reste une
référence en la matière, abordant l’ensemble du domaine lié
aux expressions régulières, et décrivant les différentes implé-
mentations, celle de Perl bien sûr mais aussi celle de PCRE,
utilisée par de très nombreux autres langages et programmes,
ou encore celle de Java.

Dans la même collection que le présent ouvrage, existe éga-

lement le Guide de Survie – Expressions régulières de Bernard

Desgraupes (Pearson, ISBN 978-2-7440-2253-1).

130

i

i

“perl” — 2010/9/30 — 13:10 — page 131 — #147
i

i

i

i

i

i

Partie
II–

O
bjet

m
oderne

6
Concepts objet

en Perl

Perl propose un grand nombre de possibilités pour écrire
du code orienté objet. De la syntaxe de base faisant partie
intégrante du langage aux nombreux modules plus évolués
disponibles sur CPAN, il n’était pas forcément facile de sa-
voir quelle voie suivre. . . Survint alors Perl 6, qui a com-
mencé à poser les bases de la programmation objet que
supporterait le langage, en ne prenant que le meilleur des
différents langages de programmation existants. Ce nou-
vel ensemble forme un tout cohérent, qui a été porté sous
forme de module Perl 5 : Moose était né. Il s’est depuis im-
posé comme la manière moderne de programmer en objet
avec Perl.

Avant de plonger dans Moose, il est toutefois bon de poser
quelques principes sur le concept d’objet en Perl. En effet,
Moose s’appuie sur les mécanismes de base présents dans le
langage pour les enrichir.

Ce chapitre mentionnera uniquement les concepts et syn-
taxes de base. Il ne parlera pas des notions d’objet bas ni-
veau Perl qui ont été supplantés par Moose.

i

i

“perl” — 2010/9/30 — 13:10 — page 132 — #148
i

i

i

i

i

i

CHAPITRE 6 Concepts objet en Perl

Créer un objet

Package->new(. . .)

Les classes fournissent un constructeur, souvent appelé
new()1. Un constructeur est simplement une méthode ren-
voyant une variable liée – donc un objet :

use Personne ;

my $obj = Personne -> new ;

Dans cet exemple, $obj est un objet de classe Personne.
Bien sûr, il ne faut pas oublier de charger la classe avant
de l’utiliser.

Qu’est-ce qu’un objet ?

En Perl, un objet est tout simplement une variable scalaire

contenant une référence, avec une particularité : cette réfé-

rence sait qu’elle est liée2 à un package donné.

Connaître la classe d’un objet

ref(. . .)

La fonction ref() utilisée avec un objet permet de récu-
pérer le package lié à cet objet :

1. Voir page 135.

2. La liaison avec le package se fait en interne avec la fonction bless,
qui ne sera pas abordée ici.

132

i

i

“perl” — 2010/9/30 — 13:10 — page 133 — #149
i

i

i

i

i

i

Définir une méthode

my $obj = Personne -> new ;

say ref ($obj); # affiche " Personne "

La fonction ref() renverra dans ce cas la chaîne Personne.

Appeler une méthode

->

Les méthodes sont appelées en utilisant l’opérateur -> sur
l’objet, suivi de l’appel de la méthode avec ses paramètres :

$obj -> saluer (’ matin ’);

Classes et méthodes

Comme un objet est un scalaire lié à un package, une classe
est tout simplement ledit package associé. C’est un package
standard.

Les fonctions définies dans ce package deviennent des mé-

thodes.

Définir une méthode
sub { }

Une méthode étant simplement une fonction du package,
elle se définit avec le mot-clé sub, déjà vu dans le chapitre
« Éléments du langage » page 26.

133

i

i

“perl” — 2010/9/30 — 13:10 — page 134 — #150
i

i

i

i

i

i

CHAPITRE 6 Concepts objet en Perl

La méthode va recevoir l’objet en premier paramètre. Les
paramètres passés lors de l’appel de la méthode viennent
après.

sub saluer {

le premier paramètre est l ’ objet

my $self = shift ;

les paramètres d ’ appel viennent

après

say " bon @_ " ;

}

Dans le cas de méthodes statiques (appelées sur la classe
au lieu d’un objet), le premier paramètre est le nom de la
classe elle-même :

package Personne ;

sub static_method {

my $class = shift ;

say $class ;

}

Personne -> static_method ;

affiche " Personne "

Certaines méthodes peuvent faire sens en tant que mé-
thode statique ou méthode objet. Dans ce cas, il faudra
différencier suivant le type du premier paramètre : un ob-
jet sera une référence, tandis que le nom de la classe sera
juste une chaîne.

sub method {

my $self = shift ;

if (ref $self) {

le paramètre est une réf . :

méthode objet

...

} else {

134

i

i

“perl” — 2010/9/30 — 13:10 — page 135 — #151
i

i

i

i

i

i

Définir un constructeur

méthode statique

...

}

}

Définir un constructeur
Une méthode spéciale du package renvoie une référence
sur un nouvel objet. Cette méthode est le constructeur de
la classe. Par convention, elle est souvent appelée new().
Cependant, cette méthode doit être écrite par le program-
meur : pour Perl, cette méthode n’a rien de spécial. Il est
d’ailleurs possible de créer plusieurs constructeurs, ren-
voyant chacun un objet : pour Perl, cela reste des mé-
thodes comme les autres.

Classes et attributs

Un objet Perl est souvent une référence de hash liée à un pa-
ckage. De ce fait, les attributs sont souvent un couple clé/va-
leur de cette référence.

sub method {

my $self = shift;

say $self->{attribut};

}

Cependant, Perl est très souple et permet d’utiliser n’importe

quelle référence comme objet. Moose permet de s’affranchir de

ces détails d’implémentation, pour se concentrer sur le para-

digme de la programmation orientée objet.

135

i

i

“perl” — 2010/9/30 — 13:10 — page 136 — #152
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 137 — #153
i

i

i

i

i

i

7
Moose

Perl fournit donc toutes les briques de base pour la pro-
grammation orientée objet : constructeur, attributs, mé-
thodes, héritage, etc. Cependant, ces briques sont vrai-
ment bas niveau. Un programmeur souhaitant utiliser un
paradigme objet doit soit plonger dans ces détails, soit
mixer un ensemble de modules objet qui fournissent cha-
cun une surcouche au système objet de Perl. . . Surcouches
qui ne sont pas toujours compatibles entre elles, encore
moins conçues comme un tout cohérent.

Moose a donc été écrit pour devenir ce tout cohérent qui
manquait au monde objet de Perl. Il fournit un ensemble
de mots-clés et de concepts, cachant toute la complexité
des détails d’implémentation, en laissant les auteurs se con-
centrer sur le problème à résoudre.

Déclarer une classe
Une classe Moose est un package, qui charge le module
Moose.

package Personne ;

use Moose ;

maintenant c ’ est une classe Moose !

1;

i

i

“perl” — 2010/9/30 — 13:10 — page 138 — #154
i

i

i

i

i

i

CHAPITRE 7 Moose

Le simple fait de charger le module Moose change l’héri-
tage de la classe : elle devient une classe dérivée de Moose::-
Object. Celle-ci fournit entre autre un constructeur new().

Moose va aussi activer automatiquement le mode strict

et le mode warnings, pour encourager l’écriture de code
propre.

Enfin, parmi les autres changements visibles, le charge-
ment de Moose va importer un certain nombre de fonc-
tions dans le package courant, qui sont détaillées dans ce
chapitre.

Astuce

L’utilisation de MooseX::Singleton au lieu de Moose dans une
classe change le constructeur afin qu’il renvoie tout le temps la
même instance – un singleton, autrement dit.

Déclarer un attribut
has

Moose permet bien sûr de déclarer les attributs d’une classe
facilement avec le mot-clé has1 :

package Personne ;

use Moose ;

has nom => (is => ’rw ’);

Info

Les objets possèdent la plupart du temps des attributs. Un at-
tribut est une variable privée que tous les membres de la classe

1. Has veut dire « possède » en anglais.

138

i

i

“perl” — 2010/9/30 — 13:10 — page 139 — #155
i

i

i

i

i

i

Déclarer un attribut

possèdent. Par exemple, tous les objets d’une classe Personne

auront un nom et une date de naissance.

Les options passées à la fonction has définissent les pro-
priétés de l’attribut. Moose propose un panel complet d’op-
tions pour personnaliser l’attribut selon son but. Le seul
paramètre obligatoire est is, qui permet de définir si l’at-
tribut sera accessible en lecture seule (valeur ro du para-
mètre) ou pourra être modifié durant la vie de l’objet (rw).

Ainsi, dans l’exemple précédent, tout objet Personne aura
un attribut nom optionnel qui pourra être modifié au
cours de la vie de l’objet.

Astuce

Si une classe déclare plusieurs attributs identiques (mis à part le
nom, bien sûr), il est possible de les déclarer tous d’un coup :

package Couleur ;

use Moose ;

has [’ rouge ’ , ’ vert ’, ’ bleu ’]

=> (is => ’ rw ’ , isa => ’ Int ’) ;

Il est possible de spécifier la valeur d’un attribut lors de
l’instanciation d’un objet, en passant le nom de l’attribut
et sa valeur comme paramètres lors de l’appel du construc-
teur :

my $p = Personne -> new (nom => ’ Jerome Quelin ’);

Et si la classe Personne avait défini deux attributs nom et
prenom :

my $p = Personne -> new (prenom => ’ Jerome ’,

nom => ’ Quelin ’

);

L’ordre de passage des paramètres n’a pas d’importance.

139

i

i

“perl” — 2010/9/30 — 13:10 — page 140 — #156
i

i

i

i

i

i

CHAPITRE 7 Moose

Accéder aux objets
Dès qu’un attribut est déclaré avec has, Moose va générer
un accesseur pour cet attribut, du nom de cet attribut :

package Personne ;

use Moose ;

has nom => (is => ’rw ’);

my $p = Personne -> new (nom => ’ Jerome ’);

say $p -> nom ;

affiche " Jerome "

$p -> nom (’ Jerome Quelin ’);

say $p -> nom ;

affiche " Jerome Quelin "

La méthode est donc un mutateur, agissant comme un ac-
cesseur (getter) ou un modificateur (setter) suivant si des
paramètres lui sont passés. Si l’objet est déclaré en lecture
seule, la méthode ne pourra pas être utilisée pour modifier
la valeur de l’attribut :

package Personne ;

use Moose ;

has nom => (is => ’ro ’);

my $p = Personne -> new ;

$p -> nom (’ Jerome Quelin ’); # invalide

Tenter d’exécuter ce programme conduira à l’erreur :

Cannot assign a value to a read - only

accessor at ./ test line 13

Modifier le nom des accesseurs
reader

writer

140

i

i

“perl” — 2010/9/30 — 13:10 — page 141 — #157
i

i

i

i

i

i

Modifier le nom des accesseurs

Moose permet de modifier le nom des accesseurs à l’aide
des paramètres reader et writer, qui changent respective-
ment le nom de l’accesseur et celui du modificateur.

Changer le nom d’un accesseur peut se révéler utile pour
changer l’API de la classe. Par exemple, pour rendre un
attribut publiquement lisible, mais uniquement modifiable
de façon privée :

package Personne ;

use Moose ;

has gps_coords => (is => ’rw ’,

writer => ’

_set_gps_coords ’

);

Info

La convention Perl consiste à préfixer par un _ les attributs et mé-
thodes privés. Cela n’empêche pas les classes extérieures d’utiliser
ces attributs et méthodes, mais c’est à leur risque !

Cela est utile dans le cas d’attributs calculés, mis à jour
par des méthodes de la classe. Ainsi, la classe Personne ci-
dessus peut définir une méthode move() qui va modifier
la localisation de la personne à chaque appel, permettant
de masquer la complexité du changement de lieu tout en
permettant à l’utilisateur de la classe de savoir où se trouve
cette personne via $p->gps_coords,

Certains préfèrent un style de programmation avec des
méthodes séparées pour les accesseurs et les modificateurs,
ce qui peut aussi se faire avec le changement de nom des
accesseurs :

package Personne ;

use Moose ;

has nom => (

141

i

i

“perl” — 2010/9/30 — 13:10 — page 142 — #158
i

i

i

i

i

i

CHAPITRE 7 Moose

is => ’ rw ’ ,

reader => ’ get_nom ’ ,

writer => ’ set_nom ’ ,

) ;

my $p = Personne -> new ;

$p -> set_nom (’ Jerome Quelin ’) ;

say $p -> get_nom ;

affiche " Jerome Quelin "

Bien sûr, cela devient vite fastidieux s’il faut le faire pour
chaque attribut. . . Le module Moose::FollowPBP2 permet
d’automatiser cette pratique :

package Personne ;

use Moose ;

use MooseX :: FollowPBP ;

has nom => (is => ’rw ’);

my $p = Personne -> new ;

$p -> set_nom (’ Jerome Quelin ’) ;

say $p -> get_nom ;

affiche " Jerome Quelin "

Une autre extension de Moose, MooseX::SemiAffordance-
Accessor, permet d’avoir les accesseurs du nom de l’attri-
but et les modificateurs précédés de set_ :

package Personne ;

use Moose ;

use MooseX :: SemiAffordanceAccessor ;

has nom => (is => ’rw ’);

my $p = Personne -> new ;

$p -> set_nom (’ Jerome Quelin ’) ;

say $p -> nom ;

affiche " Jerome Quelin "

2. PBP comme Perl Best Practices, du nom du livre de Damian Conway,
publié aux Éditions O’Reilly.

142

i

i

“perl” — 2010/9/30 — 13:10 — page 143 — #159
i

i

i

i

i

i

Méthodes de prédicat et de suppression

Méthodes de prédicat et
de suppression

predicate clearer

Moose permet de faire la distinction entre une valeur fausse
(au sens booléen du terme) et une valeur non définie.

Cette distinction se fait grâce à la définition de méthodes
de prédicat, qui vont renvoyer vrai si une valeur a bien
été spécifiée pour cet attribut – et ce, même si la valeur
spécifiée est fausse.

Définir une méthode de suppression permet d’effacer la
valeur d’un attribut. Cette action est différente de celle
qui consiste à réinitialiser l’attribut à undef : elle change
aussi la valeur de retour de la méthode prédicat.

package Personne ;

use Moose ;

has naissance => (

is => ’ rw ’ ,

vérification de l ’ existence

predicate => ’ has_naissance ’ ,

suppression de la valeur

clearer => ’ clear_naissance ’

) ;

my $p = Personne -> new ;

$p -> naissance ; # undef

$p -> has_naissance ; # faux

$p -> naissance (undef);

$p -> naissance ; # undef

$p -> has_naissance ; # vrai

$p -> clear_naissance ;

$p -> naissance ; # undef

$p -> has_naissance ; # faux

143

i

i

“perl” — 2010/9/30 — 13:10 — page 144 — #160
i

i

i

i

i

i

CHAPITRE 7 Moose

$p -> naissance (’ 1976/10/18 ’);

$p -> naissance ; # "1976/10/18"

$p -> has_naissance ; # vrai

my $epoch = Personne -> new (naissance =>

➥’ 1970/01/01 ’) ;

$epoch -> has_naissance ; # vrai

Ce besoin n’est cependant pas très répandu, Moose ne crée
donc pas ces méthodes automatiquement. Il faudra spéci-
fier les paramètres predicate et clearer lors de l’appel de
has pour que Moose génère ces méthodes.

Rendre un attribut obligatoire

required

Par défaut, les attributs sont optionnels : ils ne sont pas
obligatoirement fournis lors de l’appel au constructeur.

Moose peut cependant rendre un attribut obligatoire grâce
au paramètre required lors de l’appel de has :

package Personne ;

use Moose ;

has nom => (is => ’ro ’, required => 1);

my $p1 = Personne -> new ; # erreur

my $p2 = Personne -> new (nom => ’ Jerome

➥Quelin ’); # valide

Attention

Passer une valeur undef lors du constructeur est tout à fait pos-
sible. De même, spécifier une méthode de suppression (cf. ci-
dessus) pour cet attribut est aussi valide, même si cela n’a guère
de sens. . .

144

i

i

“perl” — 2010/9/30 — 13:10 — page 145 — #161
i

i

i

i

i

i

Donner une valeur par défaut

Vérifier le type d’un attribut
isa

Heureusement, Moose possède un solide système de typage
(voir Chapitre 8) permettant de spécifier les valeurs qu’un
attribut peut prendre. Le type d’un attribut se définit via
le paramètre isa3.

package Personne ;

use Moose ;

has nom => (is => ’ro ’, required => 1,

➥isa => ’ Str ’) ;

Ainsi, il n’est plus possible de passer une valeur undef pour
le nom lors de l’appel du constructeur : Moose lancera une
exception qui arrêtera le programme si elle n’est pas trai-
tée.

Donner une valeur par défaut
default

Il est courant de proposer des valeurs par défaut aux attri-
buts, ce qui est supporté par Moose :

package Personne ;

use Moose ;

has pays => (

is => ’rw ’, isa => ’ Str ’, required =>

1,

default => ’ France ’

) ;

3. Se lisant is a, ou est un.

145

i

i

“perl” — 2010/9/30 — 13:10 — page 146 — #162
i

i

i

i

i

i

CHAPITRE 7 Moose

valide , malgré le required

my $p = Personne -> new ;

affiche " France "

say $p -> pays ;

Si l’appel au constructeur ne contient pas d’attribut pays,
celui-ci sera initialisé à France. Si l’attribut avait un prédi-
cat, celui-ci renverra vrai (c’est-à-dire que l’attribut a une
valeur). Ainsi, il n’est plus nécessaire de spécifier l’argu-
ment required pour les attributs proposant une valeur par
défaut.

Il est aussi possible de fournir une référence à une fonction
comme valeur par défaut. Dans ce cas, elle sera appelée
par Moose comme une méthode sur l’objet nouvellement
créé :

package Personne ;

use Moose ;

has numero_fetiche => (

is => ’ rw ’, isa => ’ Str ’ ,

default => sub {

my @nbs = (1..9) ;

return $nbs [rand @nbs];

},

) ;

Utiliser une fonction de rappel est aussi nécessaire pour
fournir une valeur par défaut aux références. En effet,
sans cette précaution, Perl n’initialiserait qu’une seule ré-
férence et l’utiliserait comme valeur par défaut pour tous
les objets. . . Et ainsi tous les attributs des objets pointe-
raient vers la même valeur ! Moose détecte donc ce pro-
blème et interdit l’utilisation d’une référence comme va-
leur par défaut, en forçant l’utilisation d’une fonction de
rappel :

146

i

i

“perl” — 2010/9/30 — 13:10 — page 147 — #163
i

i

i

i

i

i

Construire un attribut

package Personne ;

use Moose ;

has liste_courses => (

is => ’ rw ’ , isa => ’ ArrayRef ’,

création d ’ une liste unique

default => sub { [] },

) ;

Ce n’est pas très élégant, mais c’est dû à la sémantique Perl
elle-même.

Construire un attribut

builder

Plutôt qu’utiliser une fonction de rappel, Moose permet
d’utiliser une méthode constructeur d’attribut, grâce au para-
mètre builder :

package Personne ;

use Moose ;

has numero_fetiche => (

is => ’ rw ’ , isa => ’ Str ’,

builder => ’ _build_numero_fetiche ’ ,

) ;

sub _build_numero_fetiche {

my @nbs = (1..9) ;

return $nbs [rand @nbs];

}

Outre le gain évident de lisibilité dû à la différentiation
des déclarations et du code, cette notation a deux grands
avantages.

Tout d’abord, elle permet facilement aux classes filles de
modifier cette valeur par défaut, en surchargeant cette mé-
thode (voir la section sur l’héritage page 154) :

147

i

i

“perl” — 2010/9/30 — 13:10 — page 148 — #164
i

i

i

i

i

i

CHAPITRE 7 Moose

package Enfant ;

use Moose ;

extends ’ Personne ’;

sub _build_numero_fetiche { 7 }

Ensuite, cette méthode permet d’utiliser des rôles. Un rôle
peut donc fournir un attribut, mais requérir que la classe
fournisse le constructeur (voir page 156).

Rendre un attribut paresseux

lazy

Une classe peut définir un grand nombre d’attributs, cha-
cun avec son constructeur. Cependant, si certains attributs
sont rarement utilisés, cela implique que de la mémoire
sera mobilisée pour eux aussi, jusqu’à la destruction de
l’objet. Sans compter le temps processeur utilisé pour gé-
nérer ces attributs – qui, même s’il est dérisoire, peut s’ad-
ditionner dans le cas de millions d’objets avec des dizaines
d’attributs.

Moose permet donc de définir des attributs « paresseux »,
dont le constructeur ne sera appelé que lorsque l’accesseur
sera appelé. Cela se fait grâce à la propriété lazy :

package Personne ;

use Moose ;

has no_securite_sociale => (

is => ’ rw ’ ,

lazy => 1,

builder => ’ _build_no_securite_sociale ’ ,

) ;

148

i

i

“perl” — 2010/9/30 — 13:10 — page 149 — #165
i

i

i

i

i

i

Rendre un attribut paresseux

Les attributs paresseux ont aussi une autre utilité : si un
attribut a une valeur par défaut dépendant d’autres attri-
buts, cet attribut doit être paresseux. En effet, Moose ne
garantit pas l’ordre de génération des valeurs par défaut : il
n’est donc pas possible de compter sur la valeur d’un autre
attribut. . . sauf à utiliser un attribut paresseux :

package Personne ;

use Moose ;

has pays => (is => ’ rw ’ , isa => ’ Str ’ ,

➥default => ’ France ’);

has boisson => (

is => ’rw ’, isa => ’ Str ’,

lazy => 1, # permet de différer l ’ appel

builder => ’ _build_boisson ’ ,

) ;

sub _build_boisson {

my $self = shift ;

return $self -> pays eq ’ France ’ ? ’ vin ’ :

➥ ’ bière ’;

}

my $p = Personne -> new ;

say $p -> boisson ; # affiche ’ vin ’

Astuce

Il est recommandé de rendre paresseux tous les attributs ayant
un constructeur (ou une valeur par défaut générée de manière
un tant soit peu complexe). Cela est d’ailleurs facilité par Moose
avec le paramètre lazy_build :

has boisson => (is => ’ rw ’ , lazy_build = >1) ;

équivalent à :

has boisson => (

is => ’ rw ’,

lazy => 1,

builder => ’ _build_boisson ’,

clearer => ’ clear_boisson ’,

predicate => ’ has_boisson ’,

);

149

i

i

“perl” — 2010/9/30 — 13:10 — page 150 — #166
i

i

i

i

i

i

CHAPITRE 7 Moose

Pour les attributs dits privés4, les méthodes générées le
seront aussi :

has _boisson => (is => ’rw ’, lazy_build = >1);

équivalent à :

has boisson => (

is => ’ rw ’,

lazy => 1,

builder => ’ _build__boisson ’,

clearer => ’ _clear_boisson ’,

predicate => ’ _has_boisson ’,

);

Notez le double _ _ dans le nom du builder.

Spécifier un déclencheur

trigger

Les déclencheurs (ou triggers en anglais) comptent parmi
les fonctionnalités avancées de Moose. Ils permettent de
spécifier une fonction de rappel qui sera appelée lorsqu’un
attribut est modifié :

package Personne ;

use Moose ;

has pays => (

is => ’rw ’,

trigger => \& _set_pays ,

) ;

sub _set_pays {

my ($self , $new , $old) = @_ ;

my $msg = " déménagement ";

$msg .= " de $old " if @_ > 2;

$msg .= " vers $new ";

4. Commençant par un _.

150

i

i

“perl” — 2010/9/30 — 13:10 — page 151 — #167
i

i

i

i

i

i

Déréférencer un attribut

say $msg ;

}

my $p = Personne -> new ;

$p -> pays (’ France ’);

affiche " déménagement vers France "

$p -> pays (’ USA ’);

affiche " déménagement de France vers USA "

Le déclencheur est appelé comme une méthode de l’objet
courant. Il reçoit aussi la nouvelle valeur et l’ancienne (si
celle-ci existait). Cela permet de différencier les cas où
l’ancienne valeur n’existait pas de ceux où elle valait undef.

Déréférencer un attribut

auto_deref

Les attributs de type référence peuvent utiliser la propriété
auto_deref pour que Moose déréférence automatiquement
la valeur lors d’un appel à l’accesseur :

package Personne ;

use Moose ;

has liste_courses => (

is => ’ rw ’ , isa => ’ ArrayRef ’,

default => sub { [] },

) ;

my $p = Personne -> new ;

my @liste = $p -> liste_courses ;

renvoie une vraie liste !

Ce mécanisme est pratique, car les attributs de type liste
ou hash sont obligatoirement des références. Le paramètre
auto_deref permet donc de s’affranchir des références pour
manipuler directement le type Perl.

151

i

i

“perl” — 2010/9/30 — 13:10 — page 152 — #168
i

i

i

i

i

i

CHAPITRE 7 Moose

Affaiblir un attribut référence
weak_ref

Il est possible de marquer un attribut de type référence
comme étant une référence dite « faible ». Ces références
ne vont pas augmenter le compteur de références de la
variable5 et permettront donc à Perl de libérer la mémoire
dès que possible :

package Personne ;

use Moose ;

has parent => (is => ’rw ’, isa => ’ Personne ’,

weak_ref = >1

);

my $child = Personne -> new ;

{

my $parent = Personne -> new ;

$child -> parent ($parent);

} # fin de portée : $parent est libéré !

À la sortie de la portée ci-dessus, $child->parent est vide,
car $parent a été réclamé par Perl. En effet, la référence
stockée dans $child->parent était « faible » et ne suffisait
pas pour maintenir $parent en vie. Ce mécanisme est très
commode pour créer des structure de données circulaires,
telles que graphes ou autres listes chaînées.

Chaîner les attributs
traits => [’Chained’]

5. Perl n’utilise pas de ramasse-miettes en interne, mais des compteurs
de références pour savoir si une valeur est toujours utilisée.

152

i

i

“perl” — 2010/9/30 — 13:10 — page 153 — #169
i

i

i

i

i

i

Simplifier les déclarations d’attributs

L’extension MooseX::ChainedAccessor permet de remanier
les modificateurs pour qu’ils renvoient l’objet. Cela per-
met de chaîner les attributs :

package Test ;

use Moose ;

has debug => (

is => ’rw ’,

isa => ’ Bool ’ ,

traits => [’ Chained ’],

) ;

sub run { ... }

my $test = Test -> new ;

$test -> debug (1) -> run () ;

C’est particulièrement intéressant pour les objets ayant un
grand nombre d’attributs qui seront modifiés durant la vie
de l’objet.

Simplifier les déclarations
d’attributs

use MooseX::Has::Sugar

L’extension MooseX::Has::Sugar exporte un certain nombre
de fonctions permettant de déclarer des attributs plus faci-
lement. La déclaration suivante :

has attr => (is => ’ rw ’ , required = >1 ,

weak_ref = >1 , auto_deref = >1

);

est équivalente à :

use MooseX :: Has :: Sugar ;

has attr => (rw , required , weak_ref ,

➥auto_deref);

153

i

i

“perl” — 2010/9/30 — 13:10 — page 154 — #170
i

i

i

i

i

i

CHAPITRE 7 Moose

Les classes ayant un nombre d’attributs important en bé-
néficieront donc grandement.

Étendre une classe parente

extends

L’héritage se fait grâce au mot-clé extends :

package Personne ;

use Moose ;

has nom => (is => ’ro ’, isa => ’ Str ’,

➥required = >1);

has prenom => (is => ’ro ’, isa => ’ Str ’,

➥required = >1);

1;

package User ;

use Moose ;

extends ’ Personne ’;

has login => (is => ’ro ’, isa => ’ Str ’,

➥required = >1);

1;

Info

Une des fonctionnalités importantes de la programmation objet
est l’héritage. L’héritage permet d’écrire une classe en étendant
une classe de base, en ajoutant ce qui manque à la classe parente,
voire en réécrivant certains comportements qui changent.

Un objet de la classe User aura donc un nom, un prénom
et un login.

Il est possible de faire appel à Moose pour hériter d’une
classe n’utilisant pas Moose. Dans ce cas, la classe va hériter

154

i

i

“perl” — 2010/9/30 — 13:10 — page 155 — #171
i

i

i

i

i

i

Surcharger une méthode

d’un constructeur qui ne connait pas le système Moose : un
grand nombre de raccourcis liés à Moose ne fonctionneront
plus, il faudra alors (entre autre) initialiser les attributs à la
main.

En cas d’héritage multiple, il faut lister les classes parentes
dans le même appel à extends, sinon chaque appel à ex-

tends réinitialiserait l’arbre d’héritage de la classe.

package Carre ;

use Moose ;

extends ’ Rectangle ’ , ’ Losange ’;

héritage multiple

1;

Surcharger une méthode
Surcharger une méthode dans une classe fille se fait de la
plus simple des manières, en écrivant une nouvelle fonc-
tion du même nom dans la sous-classe :

package Animal ;

use Moose ;

sub crie { say ’ ... ’ }

package Chien ;

use Moose ;

extends ’ Animal ’;

sub crie { say ’ ouah ! ’; }

my $c = Chien -> new ;

$c -> crie ; # affiche " ouah !"

Il est possible de modifier plus finement le comportement
des méthodes héritées avec les modificateurs de méthode
(voir page 171).

155

i

i

“perl” — 2010/9/30 — 13:10 — page 156 — #172
i

i

i

i

i

i

CHAPITRE 7 Moose

Modifier des attributs hérités
has ’+attribut’ => . . .

Par défaut, une classe hérite de tous les attributs de ses pa-
rents. Il est cependant possible de modifier certains aspects
de ces attributs, tels que les valeurs par défaut, la paresse
de l’attribut, son type, etc.

Pour cela, il faut redéfinir l’attribut avec la fonction has

en le préfixant avec un +, avant de modifier les paramètres
à changer :

package Francais ;

use Moose ;

extends ’ Personne ’;

has ’+ nom ’ => (default => ’ Dupont ’) ;

Info

Il est cependant plus facile d’utiliser un constructeur pour l’attri-
but. De plus, changer les propriétés d’un attribut peut facilement
mener à des bugs subtils. Cette pratique n’est donc pas à utiliser
à la légère.

Créer un rôle
use Moose::Role

Rôles

Les rôles sont une alternative à la hiérarchie habituelle de la
programmation orientée objet.

156

i

i

“perl” — 2010/9/30 — 13:10 — page 157 — #173
i

i

i

i

i

i

Consommer un rôle

Un rôle encapsule un ensemble de comportements qui peuvent
être partagés entre différentes classes, potentiellement sans
relation entre elles. Un rôle n’est pas une classe, mais un rôle
est « consommé » par une classe. En pratique, les attributs et
méthodes du rôle apparaîssent dans la classe comme si elle les
avait définis elle-même. Une classe héritant de la classe ayant
appliqué les rôles héritera aussi de ces méthodes et attributs.

Les rôles sont à peu près l’équivalent des traits de SmallTalk,
des interfaces Java, ou des mixins de Ruby.

En plus de définir des méthodes et attributs, un rôle peut re-

quérir que la classe définisse certaines méthodes.

Créer un rôle se fait de la même manière que créer une
classe, mais en utilisant cette fois Moose::Role :

package AnimalDeCompagnie ;

use Moose :: Role ;

has nom => (is => ’rw ’, isa => ’ Str ’);

sub caresser { say ’ purrrr ’; }

Le rôle AnimalDeCompagnie est un rôle définissant un attri-
but nom, et une méthode caresser().

Attention

Il n’est pas possible d’instancier un rôle.

Consommer un rôle
with

Appliquer un rôle à une classe se fait avec la fonction with :

157

i

i

“perl” — 2010/9/30 — 13:10 — page 158 — #174
i

i

i

i

i

i

CHAPITRE 7 Moose

package Chien ;

use Moose ;

extends ’ Mammifere ’;

with ’ AnimalDeCompagnie ’;

La classe Chien a donc maintenant un attribut nom, et une
méthode caresser().

Il est possible de composer plusieurs rôles au sein d’une
même classe :

package Chien ;

use Moose ;

with ’ AnimalDeCompagnie ’, ’ GuideAveugle ’;

Nous voyons bien que les rôles fournissent une alternative
intéressante à l’héritage classique, car les rôles AnimalDe-

Compagnie et GuideAveugle sont plus des fonctions que des
propriétés intrinsèques de la classe.

Requérir une méthode

requires

Un rôle peut forcer la classe qui le compose à fournir une
méthode. L’exemple ci-dessus fournissait la méthode ca-

resser(), alors qu’il est plus judicieux de laisser la classe
fournir cette méthode.

package AnimalDeCompagnie ;

use Moose :: Role ;

requires ’ caresser ’;

has nom => (is => ’rw ’, isa => ’ Str ’);

158

i

i

“perl” — 2010/9/30 — 13:10 — page 159 — #175
i

i

i

i

i

i

Modifier les paramètres du constructeur

Les classes Chat et Chien pourront maintenant fournir un
comportement adapté lors de l’appel à caresser(). Une
exception sera levée si la classe composant le rôle ne four-
nit pas cette méthode.

Un accesseur de la classe composant le rôle peut très bien
acquitter le prérequis spécifié par le rôle. Dans ce cas, l’at-
tribut générant l’accesseur doit être défini avant la com-
position du rôle.

Le rôle peut aussi ajouter des modificateurs de méthodes
(voir page 171) pour s’assurer d’un comportement – ceci
est une combinaison très puissante. Le rôle AnimalDeCom-

pagnie pourrait alors augmenter un attribut contentement
après un appel à caresser().

Construire et détruire des objets
Une classe utilisant Moose devient une classe dérivée de
Moose::Object, qui fournit un constructeur appelé new.
Elle ne doit donc pas redéfinir ce constructeur, qui cache
une bonne partie de la magie de Moose.

Pour modifier son comportement, Moose propose un en-
semble de points d’ancrage. Si ces méthodes sont définies
dans la classe, elles seront appelées lors de la construction
de l’objet.

Modifier les paramètres
du constructeur

around BUILDARGS => sub { . . .}

Moose utilise un mécanisme clé/valeur pour le passage d’ar-
guments. Il peut être pratique de changer ce mécanisme,
par exemple lorsque la classe n’a qu’un seul attribut.

159

i

i

“perl” — 2010/9/30 — 13:10 — page 160 — #176
i

i

i

i

i

i

CHAPITRE 7 Moose

Cela se fait en modifiant la méthode BUILDARGS (voir page 171) :

package Personne ;

use Moose ;

has nom => (is => ’ro ’, isa => ’ Str ’);

around BUILDARGS => sub {

my $orig = shift ;

my $class = shift ;

return $class -> $orig (nom => @_) if @_ == 1;

return $class -> $orig (@_);

};

my $p = Personne -> new (’ Jerome Quelin ’);

Interagir avec un objet
nouvellement créé

sub BUILD { . . .}

Si une classe définit une méthode BUILD, celle-ci sera ap-
pelée après qu’un objet a été créé. Cela peut permettre
de faire un certain nombre de validations sur l’objet lui-
même, initier un traitement sur l’objet. . . ou tout simple-
ment enregistrer la création d’un nouvel objet :

sub BUILD {

my $self = shift ;

debug (" nouvel objet créé : $self ") ;

}

Les méthodes BUILD des classes parentes sont automatique-
ment appelées (si elles existent), depuis la classe parente
jusqu’à la classe fille. Cet ordre permet aux classes pa-
rentes de faire les initialisations nécessaires avant que les

160

i

i

“perl” — 2010/9/30 — 13:10 — page 161 — #177
i

i

i

i

i

i

Interagir lors de la destruction d’un objet

spécificités de la classe fille ne soient prises en compte –
celles-ci dépendant en effet souvent de l’état de base des
classes parentes.

Interagir lors de la destruction
d’un objet

sub DEMOLISH { . . .}

De la même manière que BUILD est appelé après la créa-
tion d’un objet, la méthode DEMOLISH est appelée avant la
destruction d’un objet.

sub DEMOLISH {

my $self = shift ;

debug (" objet détruit : $self ");

}

Moose appellera cette fois les méthodes DEMOLISH en par-
tant de la classe la plus profonde pour remonter dans la
hiérarchie, de la classe la plus spécifique à la plus générale.

Cette méthode n’est pas un destructeur : l’objet lui-même
sera détruit par Perl lorsqu’il ne sera plus référencé. Cette
méthode n’est donc pas nécessaire la plupart du temps :
elle ne doit servir que pour des finalisations externes, par
exemple en cassant la connexion à une base de données.

161

i

i

“perl” — 2010/9/30 — 13:10 — page 162 — #178
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 163 — #179
i

i

i

i

i

i

8
Le typage dans

Moose

Les types dans Moose sont des objets. Ils définissent un cer-
tain nombre de contraintes et peuvent être hiérarchisés.
Moose dispose de types de base et il est possible de créer de
nouveaux types et sous-types.

Utiliser les types de base

Bool Undef Maybe Defined

Voici les principaux types reconnus par Moose :

● Bool : un booléen, acceptant soit la valeur 1 (vrai) ou
toute valeur que Perl traite comme faux (faux).

● Undef : la valeur undef.

● Maybe[type] : Moose acceptera soit une valeur du type

donné, soit undef. Par exemple :

package Personne ;

has parent => (is => ’ rw ’ , isa =>

➥’ Maybe [Personne] ’);

i

i

“perl” — 2010/9/30 — 13:10 — page 164 — #180
i

i

i

i

i

i

CHAPITRE 8 Le typage dans Moose

● Defined : toute valeur définie (non undef, donc). Ce type
possède de nombreuses sous-catégories, hiérarchisées :

• Value : une valeur. Les sous-catégories sont Str

pour les chaînes, Num pour tout ce que Perl accepte
comme un nombre et Int pour les entiers. À noter
qu’un Int est aussi un Num, qui est aussi un Str.

• ClassName ou RoleName : le nom d’une classe ou
d’un rôle (voir page 156). Dans ce cas, le type
n’acceptera que les objets de la classe (ou du rôle)
donné :

package Personne ;

use Moose ;

has parent => (is => ’ rw ’ , isa => ’

Personne ’) ;

L’attribut parent n’acceptera qu’une autre Per-

sonne comme valeur.

• Ref : une référence. Les sous-catégories sont Sca-
larRef, ArrayRef, HashRef, CodeRef, FileHandle,
RegexpRef et Object. Les trois premiers types peu-
vent être encore restreints, pour forcer un type sur
les scalaires pointés par la référence. Par exemple,
pour n’accepter qu’une liste contenant des entiers :

package Loto ;

use Moose ;

has numéros_gagnants

=> (is => ’ rw ’ , isa => ’ ArrayRef [Int] ’

);

Le type Object comporte toutes les références à
un objet Perl, même si celui-ci n’est pas un objet
d’une classe Moose.

164

i

i

“perl” — 2010/9/30 — 13:10 — page 165 — #181
i

i

i

i

i

i

Définir un sous-type

Créer une bibliothèque de types
personnalisés

use Moose::Util::TypeConstraints

Il est recommandé de regrouper les définitions des types
personnalisés d’une application dans un module qui ne
fera que cela. Cette bibliothèque de types utilisera le mo-
dule Moose::Util::TypeConstraints qui a deux rôles :

● Importation. Il importe toutes les fonctions permet-
tant de travailler avec les types (voir ci-dessous).

● Exportation. Il exporte automatiquement tous les nou-
veaux types créés dans le module.

Moose n’a qu’un seul espace de noms pour tous les types
(quel que soit le module définissant les types). Si une ap-
plication définit sa propre bibliothèque de types, il lui
faut donc s’assurer que le nom de ses types personna-
lisés n’entrent pas en conflit avec les types définis par
d’autres modules utilisés dans l’application. Pour cela, il est
conseillé de préfixer les types personnalisés – par exemple
My::App::Types::NombrePair.

Définir le type NombrePair dans le module My::App::Types
n’est pas la même chose : si un autre module définit aussi
un type NombrePair, il y aura un conflit de nom sur ce
type.

Définir un sous-type
subtype

Un sous-type est défini à partir d’un type parent et d’une
contrainte. Bien sûr, pour qu’une valeur soit valide, elle

165

i

i

“perl” — 2010/9/30 — 13:10 — page 166 — #182
i

i

i

i

i

i

CHAPITRE 8 Le typage dans Moose

doit passer les contraintes du parent (vérifiées en premier),
ainsi que les contraintes additionnelles du sous-type.

Il est aussi possible de définir un message d’erreur spéci-
fique personnalisé en cas de non-vérification des contrain-
tes du sous-type.

use Moose :: Util :: TypeConstraints ;

subtype NombrePair

=> as ’ Int ’

=> where { $_ % 2 == 0 }

=> message { " Le nombre $_ n ’ est pas

pair ." };

Les fonctions as, where et message (et d’autres encore),
permettant de travailler avec les types de Moose, sont ex-
portées par le module Moose::Util::TypeConstraints.

Définir un nouveau type

type

Il est possible de définir un type qui ne soit pas un sous-
type d’un type déjà existant. Cela se fait avec le mot-clé
type de la même manière qu’un sous-type :

use Moose :: Util :: TypeConstraints ;

type UnCaractere

=> where { defined $_ && length $_ == 1

};

Info

Il est cependant difficile de trouver un cas où la création d’un type
ne puisse être remplacé par la création d’un sous-type, fut-il très
générique (Defined, Ref ou Object).

166

i

i

“perl” — 2010/9/30 — 13:10 — page 167 — #183
i

i

i

i

i

i

Définir une union de types

L’exemple précédent aurait par exemple été plus correct en tant
que sous-type de Str.

Définir une énumération
enum

Moose permet la création d’un sous-type contenant un en-
semble de chaînes. Ce sous-type dépend du type de base
Str, ajoutant une contrainte forçant la valeur à avoir l’une
des valeurs listées (en tenant compte de la casse) :

enum LinuxDistributions

=> qw { Fedora Ubuntu Mandriva };

À la différence d’autres langages (comme le C par exemple),
il ne s’agit pas vraiment d’un réel type énuméré affectant
une valeur entière à chaque membre de l’énumération :
c’est juste un moyen rapide de générer une contrainte sur
une liste de valeurs.

Définir une union de types

|

Moose permet à un attribut d’être de plusieurs types diffé-
rents. Cela se fait avec une union de types :

has os => (is => ’ro ’, isa => ’ Linux | BSD ’) ;

Dans l’exemple ci-dessus, l’attribut os peut être soit un
objet d’une classe Linux, soit un objet d’une class BSD.

167

i

i

“perl” — 2010/9/30 — 13:10 — page 168 — #184
i

i

i

i

i

i

CHAPITRE 8 Le typage dans Moose

Cependant, dans ces cas, il peut être préférable d’utiliser :

● Soit un rôle que les classes implémentent. Dans ce cas
le type à spécifier est le nom du rôle.

● Soit du transtypage (voir ci-dessous). Dans ce cas le type
à spécifier est le type vers lequel les valeurs seront trans-
typées.

L’union de type est donc bien souvent inutile et avanta-
geusement remplacée par un autre mécanisme plus lisible.

Transtyper une valeur

coerce . . .from . . .via

Le transtypage consiste à convertir une valeur d’un type
vers un autre. C’est une fonctionalité assez puissante, à
utiliser toutefois avec précaution.

Moose permet de transtyper, mais il faut pour cela deux
conditions :

● Condition 1 : le type cible doit savoir comment extraire
la valeur depuis le type source. Cela se fait après la dé-
finition du type, avec la fonction coerce :

subtype HexNum

=> as ’ Str ’

=> where { /^0 x[a -f0 -9]+ $ /i };

coerce Int

=> from ’ HexNum ’

=> via { hex substr $_ , 2 };

168

i

i

“perl” — 2010/9/30 — 13:10 — page 169 — #185
i

i

i

i

i

i

Transtyper une valeur

Le type Int sait maintenant convertir une valeur de
type HexNum en extrayant la valeur hexadécimale de la
chaîne1.

● Condition 2 : l’attribut doit spécifier qu’il accepte d’être
transtypé par Moose. Le transtypage est en effet une opé-
ration efficace mais qui peut être source de bugs diffi-
ciles à diagnostiquer et trouver. Par défaut, Moose refuse
donc de transtyper et force l’utilisateur à se montrer ex-
plicite :

has i => (is => ’ro ’, isa => ’ Int ’,

➥coerce = >1);

Le paramètre coerce dans la définition de l’attribut in-
dique à Moose de faire les opérations de transtypage sur
cet attribut.

1. Certes, Perl reconnaît déjà la notation 0x... pour définir un entier,
mais ce morceau de code a valeur d’exemple.

169

i

i

“perl” — 2010/9/30 — 13:10 — page 170 — #186
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 171 — #187
i

i

i

i

i

i

9
Moose et les

méthodes

Une méthode reste une fonction du package, appelée sui-
vant les mêmes conventions de Perl. Moose fournit cepen-
dant un certain nombre de fonctionnalités assez pratiques
autour des méthodes.

Modifier des méthodes
Les modificateurs de méthodes sont des méthodes qui seront
automatiquement appelées par Moose lors de l’appel de la
méthode originale. Cela est bien utile, en particulier pour
les méthodes héritées de classes parentes.

Les sections suivantes modifieront la classe suivante, qui
servira de base :

package Exemple ;

use Moose ;

sub method { say ’ dans method () ’; }

my $obj = Exemple -> new ;

i

i

“perl” — 2010/9/30 — 13:10 — page 172 — #188
i

i

i

i

i

i

CHAPITRE 9 Moose et les méthodes

Le morceau de code crée donc une classe Exemple qui
définit une méthode method() affichant un message. Une
instance $obj de la classe Exemple est alors créée.

Intercaler un prétraitement

before

Il est possible d’intercaler une méthode qui sera appelée
avant l’appel à la méthode :

before method => sub { say ’ avant

➥method () 1 ’; };

L’appel à la méthode via $obj->method() affichera mainte-
nant :

avant method() 1

dans method()

La méthode appelée avant est une méthode comme une
autre, recevant donc l’objet en premier paramètre, suivi
des paramètres d’appel orginaux. Sa valeur de retour est
ignorée.

Ce modificateur est intéressant pour étendre le fonction-
nement des méthodes auto-générées par Moose comme les
accesseurs ou pour faire de la validation avant d’appeler la
méthode :

before move => sub {

my $self = shift ;

die " un véhicule est nécessaire pour

se déplacer "

if not $self -> has_vehicle ;

};

172

i

i

“perl” — 2010/9/30 — 13:10 — page 173 — #189
i

i

i

i

i

i

Intercaler un post-traitement

Définir un deuxième puis d’autres prétraitement est pos-
sible, ils seront dans ce cas appelés dans l’ordre inverse de
définition :

before method => sub { say ’ avant

➥method () 2 ’; };

$obj -> method () affichera :

avant method () 2

avant method () 1

dans method ()

Comme le modificateur de méthode est implémenté par
une fonction, il faut bien terminer la déclaration par un
point-virgule.

Intercaler un post-traitement

after

De la même manière, Moose permet d’intercaler une mé-
thode qui sera appelée juste après l’appel à cette méthode :

after method => sub { say ’ après

➥method () 1 ’; };

L’affichage lors de l’appel de $obj->method() devient donc :

avant method() 2

avant method() 1

dans method()

après method() 1

Tout comme avec before, la valeur de retour de cette
méthode est aussi ignorée.

Il est bien sûr ici aussi possible d’intercaler plusieurs mé-
thodes, par symétrie, celles-ci seront alors appelées dans
l’ordre de leur définition :

173

i

i

“perl” — 2010/9/30 — 13:10 — page 174 — #190
i

i

i

i

i

i

CHAPITRE 9 Moose et les méthodes

after method => sub { say ’ après

➥method () 2 ’; };

$obj -> method () affichera :

avant method () 2

avant method () 1

dans method ()

après method () 1

après method () 2

S’intercaler autour d’une
méthode

around

Enfin, Moose permet de s’intercaler autour de l’appel d’une
méthode, via la fonction around. Elle est plus puissante
que les modificateurs before et after, car elle permet de
modifier les arguments passés à la méthode, et même de
ne pas appeler la méthode originale ! Elle permet aussi de
modifier la valeur de retour.

La méthode entourant la méthode originale reçoit cette
dernière en premier paramètre, puis l’objet1 et enfin les
paramètres passés à la méthode :

around method => sub {

my $orig = shift ; # méthode originale

my $self = shift ; # objet

say ’ autour de method () 1 ’;

$self -> $orig (@_) ; # appel de la méthode

originale

say ’ autour de method () 1 ’;

};

1. Cela est donc différent de l’ordre de passage habituel voulant que
l’objet soit le premier paramètre.

174

i

i

“perl” — 2010/9/30 — 13:10 — page 175 — #191
i

i

i

i

i

i

Modifier plusieurs méthodes

Les méthodes insérées avec around seront appelées après
les prétraitements et avant les post-traitements. De plus,
la définition de plusieurs modificateurs suit la même lo-
gique que précédemment : ordre inverse de définition
avant la méthode, ordre de définition après la méthode.
L’affichage devient donc :

avant method() 2

avant method() 1

autour de method() 2

autour de method() 1

dans method()

autour de method() 1

autour de method() 2

après method() 1

après method() 2

Modifier plusieurs méthodes

Des modificateurs identiques peuvent être installés en une
seule fois :

before qw { method1 method2 method3 }

=> sub { say scalar localtime ; };

Il est aussi possible de spécifier une expression régulière
qui sera vérifiée avec le nom de la méthode appelée :

after qr /^ method \ d$ / => sub { say scalar

➥ localtime ; };

Cependant, ces méthodes ne permettent pas de savoir quel-
le méthode est appelée originellement : attention donc à
n’utiliser cette notation que lorsque le pré/post-traitement
est strictement identique quelle que soit la méthode !

175

i

i

“perl” — 2010/9/30 — 13:10 — page 176 — #192
i

i

i

i

i

i

CHAPITRE 9 Moose et les méthodes

Appeler la méthode parente

super()

Dans le monde objet, il est assez facile d’écrire une classe
héritant d’une autre classe. Les méthodes appelées seront
alors celles de la classe fille si elles sont surchargées. Moose
propose deux mécanismes pour que les classes de l’arbre
d’héritage travaillent ensemble : appeler la méthode sur-
chargée de la classe parente et augmenter la méthode (voir
page 177).

Le premier mécanisme est courant dans les langages sup-
portant la programmation orientée objet. Avec Moose, cela
se fait avec un appel à la fonction super(). Cependant, il
faut pour cela spécifier que la méthode est surchargée avec
intention de faire appel à la classe de base, avec la fonction
override :

package Base ;

use Moose ;

sub method { say ’ base ’; }

package Sub ;

use Moose ;

extends ’ Base ’;

override method => sub { say ’ sub ’; super () ;};

Sub -> new -> method ;

affiche :

sub

base

Comme d’habitude, la fonction override est importée par
Moose. Et comme son invocation est une instruction, il
faut la terminer avec un point-virgule.

176

i

i

“perl” — 2010/9/30 — 13:10 — page 177 — #193
i

i

i

i

i

i

Augmenter une méthode

La fonction super() ne prend pas d’arguments2, et appelle
la méthode de la classe parente avec les mêmes arguments
que ceux de la méthode de la classe fille – même si @_ a été
modifié. La fonction super() renvoie la valeur de retour
de la méthode parente.

Augmenter une méthode

inner()

augment()

En plus de ce fonctionnement somme toute classique dans
les langages de programmation orientés objet, Moose pro-
pose un mécanisme astucieux de coopération entre les
classes fille et parente. Ce mécanisme n’est pas courant,
car c’est alors la méthode parente qui va appeller la mé-
thode fille – à l’inverse du paradigme objet habituel (voir
page 175).

Ainsi, la méthode de la classe parente va faire un appel à
la fonction inner() importée par Moose :

package Document ;

use Moose ;

sub as_xml {

my $self = shift ;

my $xml = " < document >\ n";

$xml .= inner () ; # appel de la méth . fille

$xml .= " </ document >\ n ";

return $xml ;

}

2. Et ignorera donc ceux qui lui seront passés quand même. . .

177

i

i

“perl” — 2010/9/30 — 13:10 — page 178 — #194
i

i

i

i

i

i

CHAPITRE 9 Moose et les méthodes

La classe fille va surcharger la méthode de la classe parente
grâce à la fonction augment() :

package Livre ;

use Moose ;

extends ’ Document ’;

augment as_xml => sub {

my $self = shift ;

my $xml = " < livre >\ n ";

ajout du contenu xml , voire

appel à inner ()

$xml .= " </ livre >\ n";

return $xml ;

};

Appeler la méthode as_xml() sur un objet de classe Livre

va donc appeler la méthode de la classe Document, qui ap-
pellera en cours de route la méthode de Livre :

say Livre -> new -> as_xml ;

affiche :

< document >

< livre >

... contenu ...

</ livre >

</ document >

Il est bien sûr possible de continuer à appeler inner() dans
la classe fille. C’est même recommandé, au cas où la classe
fille soit elle-même sous-classée dans le futur. . . S’il n’y a
pas de classe fille, l’appel à inner() ne fera rien.

178

i

i

“perl” — 2010/9/30 — 13:10 — page 179 — #195
i

i

i

i

i

i

Déléguer une méthode à un attribut

Déléguer une méthode
à un attribut

handles => . . .

Moose permet de générer des méthodes dans certains cas,
afin de gagner en clarté ou en nombre de lignes de code à
maintenir. Le mécanisme employé de délégation s’applique
à un attribut ou à une structure (voir page 180).

Le premier cas consiste à créer une méthode qui va en ap-
peler une autre sur un attribut. Cela permet de simplifier
l’API de la classe, sans que les utilisateurs de la classe aient
besoin de savoir comment elle est construite.

package Image ;

use Moose ;

has fichier => (

is => ’ rw ’ ,

isa => ’ Path :: Class :: File ’ ,

handles => [qw { slurp stringify }],

) ;

Ainsi, un objet Image correctement initialisé permettra
d’écrire :

contenu du fichier

my $data = $image -> slurp ;

chemin du fichier image

my $path = $image -> stringify ;

Il est même possible de personnaliser l’API de la classe :

has fichier => (

is => ’rw ’,

179

i

i

“perl” — 2010/9/30 — 13:10 — page 180 — #196
i

i

i

i

i

i

CHAPITRE 9 Moose et les méthodes

isa => ’ Path :: Class :: File ’,

handles => {

blob => ’ slurp ’ ,

path => ’ stringify ’

},

) ;

Ce qui permet d’avoir une classe agréable à utiliser :

$image -> blob ;

appel de $image -> fichier -> slurp ;

$image -> path ;

appel de $image -> fichier -> stringify ;

Déléguer des méthodes à une
structure Perl

handles => . . .

Moose propose de générer un certain nombre de méthodes
pour les attributs d’une classe en fonction de son type. Par
exemple, il est possible de créer une méthode qui fera un
push sur un attribut de type référence de liste :

has liste_courses => (

isa => ’ ArrayRef [] ’,

traits => [’ Array ’],

default => sub { [] },

handles => {

ajout => ’ push ’,

suivant => ’ shift ’ ,

},

) ;

Appeler la méthode ajout() sur un objet de la classe ajou-
tera un item dans la liste liste_courses. Cela se fait en
définissant un trait sur l’attribut.

180

i

i

“perl” — 2010/9/30 — 13:10 — page 181 — #197
i

i

i

i

i

i

Déléguer des méthodes à une structure Perl

Le tableau suivant donne la liste des traits disponibles, avec
le type de l’attribut sur lequel l’appliquer et les méthodes
que propose le trait.

Trait Type Méthodes proposées

Array ArrayRef[] count, is_empty, elements, get,
pop, push, shift, unshift, splice,
first, grep, map, reduce, sort,
sort_in_place, shuffle, uniq, join,
set, delete, insert, clear, accessor,
natatime

Bool Bool set, unset, toggle, not

Code CodeRef execute, execute_method

Counter Num set, inc, dec, reset

Hash HashRef[] get, set, delete, keys, exists, de-

fined, values, kv, elements, clear,
count, is_empty, accessor

Number Num set, add, sub, mul, div, mod, abs

String Str inc, append, prepend, replace, match,
chop, chomp, clear, length, substr

La plupart de ces méthodes sont assez faciles à comprendre
et reprennent les fonctions de base à appliquer sur les
hashs, tableaux, nombres et chaînes. Pour plus d’informa-
tions sur les méthodes, se reporter à la documentation des
traits, Moose::Meta::Attribute::Native::Trait::Hash par
exemple.

181

i

i

“perl” — 2010/9/30 — 13:10 — page 182 — #198
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 183 — #199
i

i

i

i

i

i

Partie
III–

M
anipulation

de
données

10
Fichiers et
répertoires

La gestion de fichiers est centrale pour tout programme un
tant soit peu conséquent. Les ouvrir, les lire, les écrire. . .
Mais cela va plus loin, avec le parcours de répertoires, la
portabilité entre les systèmes d’exploitation, etc. Toutes
choses dont Perl se joue avec la plus grande facilité.

Ouvrir des fichiers
IO::File->new(..)

Toute manipulation de fichier en Perl passe par un des-
cripteur de fichier. Obtenir un descripteur fichier se fait
avec le constructeur de IO::File :

use IO :: File ;

my $path = ’/ chemin / vers / le / fichier ’;

my $fh = IO :: File -> new ($path , ’ <’)

or die " ne peut ouvrir ’ $path ’ : $!\ n" ;

i

i

“perl” — 2010/9/30 — 13:10 — page 184 — #200
i

i

i

i

i

i

CHAPITRE 10 Fichiers et répertoires

Cette méthode accepte trois arguments :

● Argument 1 : un chemin vers le fichier à ouvrir. Ce
chemin doit suivre les canons du système d’application
et peut être absolu ou relatif.

● Argument 2 : un mode d’ouverture. IO::File propose
les modes d’ouverture listés dans le tableau suivant1.

Tableau 10.1: Modes d’ouverture des fichiers

Mode Description

< Mode lecture

> Mode écriture, écrase l’ancien fichier

>> Mode écriture, concaténation après l’ancien

fichier

● Argument 3 : une indication des permissions à appliquer
dans le cas d’une ouverture en écriture d’un fichier qui
n’existe pas.

Le constructeur renvoie un objet IO::File qui sert de des-
cripteur de fichier, ou undef en cas d’erreur. Dans ce cas,
la variable spéciale $! contient le code d’erreur correspon-
dant.

Comme le constructeur de IO::File renvoie undef en cas
d’erreur, il est courant de voir un appel à cette fonction
suivi d’un ou booléen appelant la fonction die. Outre la
concision, cela permet de produire du code qui se lit de
manière naturelle : ouvre ce fichier ou meurt. Si les opérations
à faire en cas d’erreur sont plus conséquentes, un if sera
plus pertinent.

1. Les familiers du langage C peuvent aussi utiliser les modes d’ouverture
de la fonction ANSI fopen() : w, r, r+, etc.

184

i

i

“perl” — 2010/9/30 — 13:10 — page 185 — #201
i

i

i

i

i

i

Utiliser un descripteur de fichier en lecture

use IO :: File ;

my $path = ’/ chemin / vers / le / fichier ’;

my $fh = IO :: File -> new ($path , ’ <’);

if (not defined $fh) {

traiter l ’ erreur

}

Utiliser un descripteur de fichier
en lecture

getline()

Une fois le fichier ouvert, il faut bien sûr pouvoir utiliser
le descripteur de fichier renvoyé par le constructeur de
IO::File.

La lecture se fait avec la méthode getline(). La manière
la plus simple pour lire une ligne sera donc :

my $line = $fh -> getline ;

La méthode getline() renvoyant undef en fin de fichier,
il est donc courant de voir pour lire un fichier :

while (defined (my $line = $fh -> getline))

{

utiliser $line

}

La méthode getlines() (noter le s) permet de lire le fi-
chier d’un coup dans un tableau :

my @lines = $fh -> getlines ;

En fait, les méthodes getline() et getlines() vont uti-
liser la variable $/ pour savoir ce qu’est une ligne. Une

185

i

i

“perl” — 2010/9/30 — 13:10 — page 186 — #202
i

i

i

i

i

i

CHAPITRE 10 Fichiers et répertoires

ligne s’arrêtera après la première occurrence de cette va-
riable. Comme $/ est positionnée par défaut à \n (LF, qui
vaut \xA) sur les systèmes de type Unix2 et \r\n (CR LF,

\xD\xA) pour les systèmes Windows, les méthodes get-

line() et getlines() renverront bien une ligne telle que
le développeur s’y attend.

Il est tout à fait possible de modifier cette variable. Par
exemple, pour lire un fichier paragraphe par paragraphe,
il faut indiquer de lire jusqu’à rencontrer une ligne vide,
c’est-à-dire deux retours chariots à la suite :

$ / = "\ n\n ";

while (defined (my $paragraph = $fh ->

getline)) {

utiliser $paragraph

}

Astuce

En fait, le mode paragraphe se définit avec :

$ / = "" ;

Cela permettra de lire le fichier jusqu’à la prochaine ligne vide. La
différence se fera en cas de plusieurs retours chariots à la suite :
dans ce cas, ils seront tous considérés comme une seule ligne
vide – alors qu’avec “\n\n” ils seront comptés comme autant de
nouveaux paragraphes, même si le paragraphe ne contient qu’une
ligne vide.

Pour lire le fichier d’un seul coup dans un scalaire, il suffit
de positionner cette variable à undef :

undef $ /;

my $data = $fh -> getline ;

2. Mac OS X est considéré comme un Unix.

186

i

i

“perl” — 2010/9/30 — 13:10 — page 187 — #203
i

i

i

i

i

i

Utiliser un descripteur de fichier en écriture

Attention

La variable $/ est utilisée dans de nombreux endroits. La modifier
n’est donc pas sans impact sur le reste du code. . . ou des modules
utilisés !

Il est donc préférable de faire ce changement dans un bloc
réduit, avec le mot-clé local qui remet automatiquement
l’ancienne valeur en place à la sortie de la portée.

my $data ;

{

positionne $/ à undef de manière

temporaire

local $ /;

$data = <$fh >;

} # fin du bloc : $ / reprend

son ancienne valeur

Pour lire un fichier d’un bloc, le module File::Slurp fa-
cilite d’ailleurs la vie, en permettant d’écrire :

use File :: Slurp ;

my $data = read_file (’/ chemin / vers / mon /

➥fichier ’);

Ce qui est tout de même plus simple !

Utiliser un descripteur de fichier
en écriture

print(..)

Pour écrire dans un fichier, c’est tout aussi aisé : il suffit
d’utiliser la méthode print().

187

i

i

“perl” — 2010/9/30 — 13:10 — page 188 — #204
i

i

i

i

i

i

CHAPITRE 10 Fichiers et répertoires

$fh -> print (" nouvelle ligne ajoutée \n ");

Pour être tout à fait correcte, une application se devrait
de vérifier le code de retour de la fonction et d’agir en
conséquence si une erreur survient :

$fh -> print (" nouvelle ligne \ n")

➥or die " erreur lors de l ’ écriture : $! ";

La méthode printf() est aussi disponible pour les sorties
formatées. Elle prend les mêmes arguments que la fonc-
tion printf décrite dans perlfunc.

Fermer un descripteur de fichier

close()

Une fois les opérations de lecture ou d’écriture dans un
fichier terminées, il faut fermer le fichier. Il faut utiliser la
méthode close() et vérifier – là aussi pour une application
consciencieuse – son code de retour :

$fh -> close

➥or die " erreur lors de la fermeture :

➥$!" ;

À noter que IO::File va fermer le fichier automatique-
ment lorsque l’objet arrivera en fin de portée :

use IO :: File ;

my $path = ’/ chemin / vers / le / fichier ’;

{

my $fh = IO :: File -> new ($path , ’ >’)

➥or die $!;

print $fh " nouvelle ligne \n" ;

} # fermeture de $fh automatique

188

i

i

“perl” — 2010/9/30 — 13:10 — page 189 — #205
i

i

i

i

i

i

Manipuler des chemins avec Path::Class

Cependant, il est préférable de fermer explicitement les fi-
chiers : cela a le mérite de produire un code facile à com-
prendre, plutôt que d’avoir à deviner quand le descripteur
de fichier n’est plus utilisé.

Manipuler des chemins avec
Path::Class

Pour travailler avec des fichiers, il faut d’abord connaître
leur emplacement dans l’arborescence du système de fi-
chiers. De plus, travailler de manière portable n’est pas for-
cément facile sans utiliser le bon module. Heureusement,
Path::Class permet de réaliser toutes ces opérations, et
même plus !

use Path :: Class ;

my $file = file (’ chemin ’ , ’ sous - chemin ’ ,

➥’ fichier . txt ’);

print $file -> stringify ;

Ce court exemple donnera des résultats différents suivant
la plateforme utilisée pour le test :

● chemin/sous-chemin/fichier.txt sous Unix ;

● chemin\sous-chemin\fichier.txt sous Windows.

Un objet Path::Class sera automatiquement converti lors
d’un contexte de chaîne. Les deux notations suivantes sont
donc équivalentes :

my $string = $dir -> stringify ;

my $string = " $dir ";

Cela permet d’utiliser un objet Path::Class facilement
dans quasiment tous les endroits qui attendent normale-
ment une chaîne contenant un chemin vers un fichier ou
un répertoire.

189

i

i

“perl” — 2010/9/30 — 13:10 — page 190 — #206
i

i

i

i

i

i

CHAPITRE 10 Fichiers et répertoires

Pointer un fichier ou
un répertoire

dir()

file()

Les constructeurs dir() et file() acceptent soit un chemin
découpé logiquement (comme dans l’exemple ci-dessus),
soit un chemin natif de la plateforme, soit un mélange des
deux. Les exemples suivants sont tous valides et pointent
sur le même fichier :

use Path :: Class ;

my $file1 = file (’ chemin ’, ’sous - chemin ’,

➥’ file . txt ’);

my $file2 = file (’ chemin / sous - chemin /

➥file . txt ’) ;

my $file3 = file (’ chemin / sous - chemin ’,

➥’ file . txt ’);

Le fichier ou répertoire ainsi pointé peut ne pas exister,
Path::Class est un module qui aide à travailler avec les
chemins d’accès dans l’absolu.

Les objets vus ci-dessus pointent des chemins relatifs au
répertoire courant. Pour créer des chemin absolus, il faut
utiliser soit une chaîne vide en premier argument, soit la
syntaxe de la plateforme :

use Path :: Class ;

my $file1 = file (’’ , ’ usr ’, ’ bin ’, ’ perl ’) ;

my $file2 = file (’/ usr / bin / perl ’) ;

190

i

i

“perl” — 2010/9/30 — 13:10 — page 191 — #207
i

i

i

i

i

i

Pointer un objet parent

Pointer un objet relatif

subdir(..)

Une fois un objet Path::Class::Dir3 créé, il peut être uti-
lisé pour pointer des fichiers et répertoires contenus dans
ce répertoire grâce aux méthodes file et subdir.

use Path :: Class ;

my $dir = dir (’/ etc ’);

my $hosts = $dir -> file (’ hosts ’) ;

my $xdir = $dir -> subdir (’ X11 ’) ;

Les variables $hosts et $xdir seront respectivement un ob-
jet Path::Class:File et Path::Class::Dir.

Pointer un objet parent

parent()

Inversement, Path::Class permet de pointer le répertoire
parent d’un objet avec la méthode parent() :

use Path :: Class ;

my $hosts = file (’/ etc / hosts ’);

my $xdir = dir (’/ etc / X11 ’);

my $dir1 = $hosts -> parent ;

my $dir2 = $xdir -> parent ;

Les objets $dir1 et $dir2 pointent tous les deux sur /etc.

3. Un répertoire sera un objet de classe Path::Class::Dir tandis qu’un
fichier sera un objet de classe Path::Class::File.

191

i

i

“perl” — 2010/9/30 — 13:10 — page 192 — #208
i

i

i

i

i

i

CHAPITRE 10 Fichiers et répertoires

Info

À noter que cette méthode renvoie le parent logique, qui peut
être différent du parent physique (en cas de lien symbolique par
exemple). Si le répertoire est relatif, la notation relative du réper-
toire parent est utilisée.

Voici un exemple pour aider à la compréhension :

$dir = dir (’/ foo / bar ’);

for (1..6) {

print " absolu : $dir \ n";

$dir = $dir -> parent ;

}

$dir = dir (’ foo / bar ’) ;

for (1..6) {

print " relatif : $dir \n" ;

$dir = $dir -> parent ;

}

Ceci affichera sur une plateforme Unix :

absolu : /foo/bar

absolu : /foo

absolu : /

absolu : /

absolu : /

absolu : /

relatif : foo/bar

relatif : foo

relatif : .

relatif : ..

relatif : ../..

relatif : ../../..

Obtenir des informations
stat()

192

i

i

“perl” — 2010/9/30 — 13:10 — page 193 — #209
i

i

i

i

i

i

Lister un répertoire

Une fois un objet répertoire ou fichier créé, la méthode
stat() permet de faire un appel à la fonction du même
nom. Elle renvoie un objet File::stat, qui possède des
méthodes nommées pour accéder aux valeurs :

my $statf = $file -> stat ;

my $statd = $dir -> stat ;

print $statf -> size ;

print $statd -> nlinks ;

Créer ou supprimer un répertoire

mkpath(..), rmtree(..)

use Path :: Class ;

my $dir = dir (’ chemin / sous - chemin ’);

$dir -> mkpath ;

$dir -> rmtree ;

Les méthodes mkpath() et rmtree() vont respectivement
créer toute l’arborescence (cela inclut tous les répertoires
intermédiaires nécessaires) et la supprimer récursivement
avec tout son contenu.

Lister un répertoire

children()

La méthode children() renvoie un ensemble d’objets Path-
::Class (fichiers et répertoires) contenus dans le réper-
toire. Bien sûr, il est nécessaire dans ce cas que $dir existe
et soit accessible en lecture pour pouvoir le lister :

193

i

i

“perl” — 2010/9/30 — 13:10 — page 194 — #210
i

i

i

i

i

i

CHAPITRE 10 Fichiers et répertoires

use Path :: Class ;

my $dir = dir (’ chemin / sous - chemin ’);

my @children = $dir -> children ;

Chaque membre de @children sera un élément de $dir,
c’est-à-dire que les membres seront de la forme chemin/-

sous-chemin/fichier.txt et non fichier.txt.

La méthode children() ne renvoie pas les entrées corres-
pondant aux répertoires courant et parent4. Pour obtenir
ces entrées spéciales dans la liste des éléments d’un réper-
toire, il faut passer une valeur vraie au paramètre all.

seules les entrées standard

my @children = $dir -> children ;

toutes les entrées

my @children = $dir -> children (all => 1) ;

Ouvrir un fichier
open(..)

L’opération la plus courante pour un fichier est bien sûr
son ouverture. Le début de chapitre présente comment
ouvrir un fichier dont l’emplacement était déjà connu.
Mais la méthode open() d’un objet Path::Class::File

permet de court-circuiter l’appel au constructeur de IO::-

File et de récupérer directement un descripteur sur ce fi-
chier :

4. . et .. sous Unix et Windows.

194

i

i

“perl” — 2010/9/30 — 13:10 — page 195 — #211
i

i

i

i

i

i

Ouvrir un fichier

my $fh = $file -> open ($mode , $permissions);

Bien sûr, il faut vérifier la validité de ce descripteur qui
sera undef en cas d’erreur, avec la variable spéciale $! po-
sitionnée de manière adéquate.

Comme le traitement standard d’une erreur lors de l’ou-
verture d’un fichier est souvent d’appeler die avec le mes-
sage d’erreur, Path::Class propose deux méthodes qui
font cela :

my $fhr = $file -> openr ;

my $fhw = $file -> openw ;

Elles sont équivalentes respectivement à :

my $fhr = $file -> open (’r ’)

➥or die " Can ’t read $file : $!" ;

my $fhw = $file -> open (’w ’)

➥or die " Can ’t write $file : $! ";

Attention cependant, le message d’erreur est en anglais, et
non localisé.

Finalement, la méthode slurp() permet de lire le fichier
d’un seul coup. La méthode est sensible au contexte et
renverra donc soit le contenu du fichier en mode scalaire,
soit un tableau de lignes5 en mode liste :

my $data = $file -> slurp ;

my @lines = $file -> slurp ;

5. Lignes définies ici aussi par $/.

195

i

i

“perl” — 2010/9/30 — 13:10 — page 196 — #212
i

i

i

i

i

i

CHAPITRE 10 Fichiers et répertoires

Supprimer un fichier

remove()

Supprimer un fichier peut se révéler compliqué sur cer-
taines plateformes6. Pour simplifier cette opération, Path-
::Class propose la méthode remove() qui s’occupe des
spécificités de la plateforme :

$file -> remove ;

Elle renvoie simplement un booléen pour indiquer le suc-
cès ou l’échec de l’opération.

Parcourir un répertoire
récursivement

recurse(..)

La méthode recurse() permet de parcourir un répertoire
de manière récursive. Pour chaque élément rencontré, la
fonction anonyme passée en paramètre est appelée :

$dir -> recurse (callback => sub { ... });

Couplée à la méthode is_dir() qui permet de savoir si
un objet rencontré est de type répertoire ou fichier, re-
curse() est un outil extrêmement puissant pour construire
des fonctions de recherche performantes et concises.

L’exemple suivant permet de trouver tous les fichiers nom-
més *.pm et d’afficher leur taille :

6. Telles que VMS qui maintient des versions de fichiers.

196

i

i

“perl” — 2010/9/30 — 13:10 — page 197 — #213
i

i

i

i

i

i

Créer un fichier temporaire

$dir -> recurse (callback => sub {

my $obj = shift ;

return if $obj -> is_dir ;

return if $obj =~ /\. pm /;

print " $obj \ t" . $obj -> stat -> size . "\n ";

});

Enfin, la méthode recurse() accepte le paramètre depth-

first qui permet de faire d’abord une recherche en pro-
fondeur :

$dir -> recurse (depthfirst => 1,

callback => sub { ... }

);

Créer un fichier temporaire

File::Temp

Créer des fichiers (ou répertoires) temporaires est une tâche
courante qui est en pratique assez difficile à réaliser pour
éviter les race conditions.

Le module File::Temp va créer un fichier temporaire et
renverra un objet qui pourra être utilisé comme un des-
cripteur de fichier classique. Il possède aussi une méthode
filename() qui renvoie le nom du fichier temporaire ainsi
conçu.

use File :: Temp ;

my $fh = File :: Temp -> new ;

$fh -> print (" une nouvelle ligne \n ") ;

print $fh -> filename ;

197

i

i

“perl” — 2010/9/30 — 13:10 — page 198 — #214
i

i

i

i

i

i

CHAPITRE 10 Fichiers et répertoires

Le fichier temporaire va être créé dans le répertoire tem-
poraire par défaut (souvent /tmp sous Unix), sauf si le pa-
ramètre DIR est fourni. Il est aussi possible de contrôler la
forme du nom du fichier temporaire avec les paramètres
TEMPLATE et SUFFIX. Le paramètre TEMPLATE doit compor-
ter assez de caractères X qui seront remplacés aléatoirement
lors de la création du fichier :

my $fh = File :: Temp -> new (

DIR => ’/ tmp / special ’,

TEMPLATE => ’ temp_XXXXXXXX ’,

SUFFIX => ’. dat ’,

) ; # fichier créé :

/ tmp / special / temp_YbUzIJj7 . dat

Le fichier temporaire sera supprimé lorsque l’objet sera
détruit (en fin de portée le plus souvent), mais le para-
mètre UNLINK permet de contrôler ce comportement :

use File :: Temp ;

{

my $fh = File :: Temp -> new (UNLINK => 0);

utilisation de $fh

} # le fichier ne sera pas supprimé

automatiquement

Créer un répertoire temporaire
De la même manière, il est parfois bien pratique de créer
un répertoire temporaire. Là encore, le module File::-

Temp vient à la rescousse :

use File :: Temp ;

my $tmp = File :: Temp -> newdir ;

print $tmp -> dirname ;

198

i

i

“perl” — 2010/9/30 — 13:10 — page 199 — #215
i

i

i

i

i

i

Identifier les répertoires personnels

Le constructeur newdir() comprend la même option DIR

que pour les fichiers temporaires. Le répertoire ainsi créé
sera aussi supprimé lorsque l’objet sera détruit, sauf si le
paramètre CLEANUP est fourni avec une valeur fausse :

use File :: Temp ;

{

my $tmp = File :: Temp -> newdir (

➥ CLEANUP => 0);

my $dir = $tmp -> dirname ;

utilisation de $tmp

} # le répertoire ne sera pas supprimé

automatiquement

Identifier les répertoires
personnels

File::HomeDir

Certaines opérations se font sur des fichiers situés dans le
répertoire personnel de l’utilisateur. Savoir où se situe ce
répertoire utilisateur peut être assez compliqué suivant la
plateforme, et même suivant la version de celle-ci7. Le
module File::HomeDir transcende ces différences et ren-
voie la bonne valeur sur l’ensemble des plateformes :

use File :: HomeDir ;

my $home = File :: HomeDir -> my_home ;

De plus, un certain nombre de méthodes peuvent être
utilisées pour retrouver les autres répertoires personnels :

7. Par exemple, Windows XP et Windows Vista ne placent pas le ré-
pertoire personnel des utilisateurs au même endroit.

199

i

i

“perl” — 2010/9/30 — 13:10 — page 200 — #216
i

i

i

i

i

i

CHAPITRE 10 Fichiers et répertoires

use File :: HomeDir ;

my $desktop = File :: HomeDir -> my_desktop ;

➥# bureau

my $docs = File :: HomeDir -> my_documents ;

➥# documents

my $music = File :: HomeDir -> my_music ;

➥# musique

my $pics = File :: HomeDir -> my_pictures ;

➥# photos

my $videos = File :: HomeDir -> my_videos ;

➥# films

my $data = File :: HomeDir -> my_data ;

➥# données

Dans le monde Unix, toutes sortes de données sont mé-
langées dans le répertoire personnel – bien que cela soit en
train de changer sur les plateformes supportant la norme
FreeDesktop. Mais les autres plateformes utilisent depuis
quelques temps des répertoires différents pour stocker des
données différentes. Une application utilisant File::Home-
Dir devra donc essayer de recourir à la méthode la plus
spécifique possible: les documents utilisateurs devront être
sauvegardés dans my_documents(), les données internes
d’une application non destinées à l’utilisateur dans my_da-
ta(). Ceci ne prêtera pas à conséquence sur les plateformes
ne faisant pas de distinction, car File::HomeDir renverra le
répertoire personnel par défaut pour ces répertoires parti-
culiers. Mais cela permettra à l’application de fonctionner
de manière native sur les plateformes pour qui cette dis-
tinction est importante.

La valeur renvoyée par ces diverses méthodes est une
chaîne, à compléter d’un appel à Path::Class pour profi-
ter des facilités de ce module.

use File :: HomeDir ;

use Path :: Class ;

my $home = dir (File :: HomeDir -> my_home);

200

i

i

“perl” — 2010/9/30 — 13:10 — page 201 — #217
i

i

i

i

i

i

Changer de répertoire

Enfin, il est bon de noter que ces fonctions s’assureront
que les répertoires renvoyés existent. Ainsi, l’application
peut être sûre qu’aucune race condition n’arrivera lors de
leur utilisation.

Connaître le répertoire courant

getcwd()

Beaucoup de programmes travaillent avec des fichiers qui
par défaut seront relatifs au répertoire courant. Il est donc
important de savoir comment utiliser ce répertoire en Perl.

use Cwd ;

my $dir = getcwd ;

Récupérer le répertoire courant se fait avec la fonction
getcwd() du module Cwd. La valeur renvoyée est une chaîne,
qu’il faut donc traiter pour pouvoir utiliser la puissance de
Path::Class (voir page 189) :

use Cwd ;

use Path :: Class ;

my $dir = dir (getcwd);

Changer de répertoire

chdir()

La fonction chdir() connue des programmeurs C existe
aussi en Perl, et est sans doute le moyen le plus facile pour
changer de répertoire :

chdir $newdir ;

201

i

i

“perl” — 2010/9/30 — 13:10 — page 202 — #218
i

i

i

i

i

i

CHAPITRE 10 Fichiers et répertoires

Cependant, l’inconvénient de cette fonction est que l’an-
cien répertoire est, par définition, complètement oublié.
Le module File::pushd permet de pallier ce problème,
en empilant les répertoires de la même manière que son
équivalent pushd du shell bash8.

use File :: HomeDir ;

use File :: pushd ;

chdir File :: HomeDir -> my_home ;

{

changement de répertoire durant

une portée limitée

my $dir = pushd (’/ tmp ’);

travail dans / tmp

} # fin de la portée :

retour au répertoire home

Comme il est courant de changer de répertoire pour un
répertoire temporaire, File::pushd propose aussi la fonc-
tion tempd() qui combine pushd() avec un appel à File::-
Temp.

use File :: pushd ;

{

my $dir = tempd () ;

travail dans un répertoire

temporaire

} # retour au répertoire initial

Le répertoire temporaire sera automatiquement supprimé
en fin de portée.

8. La fonction popd n’existe pas, la fin de portée joue ce rôle.

202

i

i

“perl” — 2010/9/30 — 13:10 — page 203 — #219
i

i

i

i

i

i

11
Bases de

données SQL

Est-il besoin de préciser à quel point les bases de don-
nées sont omniprésentes dans le monde informatique, sous
des formes très diverses et avec des paradigmes très diffé-
rents en fonction des besoins ? Ce chapitre est consacré
aux bases de données relationnelles car elles représentent
un passage quasi obligé dans la programmation actuelle ;
mais il faut garder à l’esprit qu’elles ne représentent qu’un
aspect de l’univers, plus large qu’il n’y paraît, des nom-
breux autres paradigmes de bases de données existant de-
puis longtemps (les fichiers /etc/passwd d’Unix, la base de
registres de Windows, le DNS) ou apparus plus récem-
ment (CouchDB, TokyoCabinet, Redis, etc.).

Bien évidemment, Perl dispose de tout ce qui est néces-
saire pour se connecter aux bases de données. De manière
amusante, alors que le slogan de Perl est « il y a plus d’une
manière de le faire », dans le cas des bases de données,
le module DBI règne sur les mécanismes de connexion,
établissant le standard de fait.

DBI (Database Interface) constitue véritablement une API
générique et normalisée d’accès aux bases de données (dans
un sens très large du terme), comparable dans l’esprit à

i

i

“perl” — 2010/9/30 — 13:10 — page 204 — #220
i

i

i

i

i

i

CHAPITRE 11 Bases de données SQL

JDBC dans le monde Java. Les mécanismes de connexion
et le protocole proprement dits sont implémentés dans les
pilotes correspondants à chaque base, les DBD Database
Driver.

DBI est un de ces modules majeurs dans le monde Perl qui
ont conduit les développeurs à contribuer à de nombreux
pilotes sur CPAN, et comme souvent quand il y a plé-
thore, certains sont corrects, certains bien moins, d’autres
encore sont très bons. Il ne sera pas surprenant de trouver
dans cette dernière catégorie les pilotes des bases majeures
que sont Oracle, PostgreSQL, MySQL, DB2, Ingres, SQ-
Lite. Un pilote ODBC générique est disponible pour les
bases Windows.

Info

Une dernière catégorie de pilotes mérite l’attention : ceux écrits
par des gens pouvant être qualifié de « dérangés », mais qui
peuvent s’avérer être la seule solution dans bien des situations
compliquées. Il s’agit des pilotes écrits en pur Perl, permettant
de se connecter à certaines bases sans utiliser leurs bibliothèques
usuelles. Sans surprise, ces pilotes n’existent que pour les bases
libres PostgreSQL et MySQL : DBD::PgPP pour PostgreSQL, et
DBD::mysqlPP et DBD::Wire10 pour MySQL (DBD::Wire10 pou-
vant aussi se connecter aux bases Drizzle et Sphinx). Certes, ces
pilotes seront moins efficaces que les versions natives, mais ils
peuvent être salvateurs s’il faut déployer dans un environnement
ancien ou très contraignant (conflits de versions des clients). À
noter qu’il existe de même une version pur Perl de DBI, par dé-
faut nommée DBI::PurePerl.

Enfin, il faut savoir que DBI fonctionne de manière trans-
parente par rapport au langage de requêtage. S’il s’agira de
SQL dans la très grande majorité des cas, il est parfaite-
ment possible d’écrire des pilotes avec un autre langage.
Ainsi, DBD::WMI utilise logiquement WQL (WMI Query

204

i

i

“perl” — 2010/9/30 — 13:10 — page 205 — #221
i

i

i

i

i

i

Se connecter

Language) pour interroger la base WMI sous Windows, et
l’un des auteurs travaille sur DBD::Nagios, qui utilise LQL
(Livestatus Query Language).

S’il est encore besoin de montrer la capacité d’adaptation
de DBI aux environnements les plus exigeants, il suffit de
mentionner qu’il est fourni avec deux modules de proxy
différents, l’un, DBD::Proxy, avec conservation d’état (sta-
teful), le second, DBD::Gofer, sans conservation d’état (sta-
teless). Cas d’utilisation typiques : traversée de pare-feu ou
connexion à une ou plusieurs bases exotiques dont les pi-
lotes ne sont disponibles qu’en JDBC. DBD::Gofer peut
aussi servir de système de répartition de charge.

Se connecter
DBI->connect()

use DBI ;

my $dbh = DBI -> connect (

" dbi : Pg : host = dbhost ; dbname = mybase " ,

$login , $password , { RaiseError => 1 }

) ;

$dbh -> do (" TRUNCATE logs ");

$dbh -> prepare (" SELECT id , name

➥FROM customers ");

...

La méthode connect() de DBI est un constructeur, simi-
laire à la méthode new() d’autres modules, qui tente d’éta-
blir la connexion à la base et renvoie un objet descripteur
de base (DBH, database handler).

205

i

i

“perl” — 2010/9/30 — 13:10 — page 206 — #222
i

i

i

i

i

i

CHAPITRE 11 Bases de données SQL

Les trois premiers arguments sont la chaîne de connexion
(ou DSN, data source name), le nom d’utilisateur et le mot
de passe. Ces deux derniers peuvent être des vides, mais
il faut quand même les fournir. La chaîne de connexion
ressemble à une URL et se décompose ainsi :

● "dbi:" : La chaîne "dbi:" est l’équivalent du protocole
et définit ici l’API ; elle est donc toujours celle de DBI.

● Le nom du module. Le nom du module Perl qui
fournit le pilote à utiliser, sans son préfixe DBD::, ainsi
pour accéder à une base Oracle, le module à utiliser est
DBD::Oracle, d’où le nom Oracle. Idem pour SQLite.
Par contre, pour PostgreSQL le module Perl s’appelle
DBD::Pg, et pour MySQL, DBD::mysql (tout en minus-
cules). Si aucun nom n’est fourni, DBI ira le chercher
dans la variable d’environnement $DBI_DRIVER. À noter
que DBI chargera automatiquement le module corres-
pond.

● Les arguments. Le reste de la chaîne, après les deux-
points qui suit le pilote, constitue les arguments du pi-
lote, et n’est pas interprété par DBI. Si la chaîne fournie
est vide, connect() ira la chercher dans la variable d’en-
vironnement $DBI_DSN.

Le dernier argument de connect(), optionnel, est une ré-
férence vers un hash contenant des attributs DBI. Parmi
les nombreux attributs existants, il n’est vraiment besoin
que de connaître les suivants :

● AutoCommit : active ou désactive le support des transac-
tions. La valeur vraie, positionnée par défaut en respect
des conventions JDBC et ODBC, désactive le support
des transactions. Il faut donc explicitement positionner
cet attribut à faux pour activer les transactions, si le pi-
lote les supporte. Les bonnes pratiques conseillent de
toujours le positionner à la valeur attendue par le pro-
gramme, même s’il s’agit de la valeur par défaut.

206

i

i

“perl” — 2010/9/30 — 13:10 — page 207 — #223
i

i

i

i

i

i

Se connecter

● RaiseError : force les erreurs à provoquer des excep-
tions, plutôt que de simplement renvoyer des codes
d’erreur. Par défaut désactivée, cette option est très utile
pour l’écriture de courts programmes où la gestion des
erreurs rajoute une quantité non négligeable de code
assez ennuyeux.

● ShowErrorStatement : permet d’afficher la requête qui a
provoqué l’erreur dans les messages.

● TraceLevel : c’est un des moyens pour activer les traces
d’exécution.

● Profile : c’est un des moyens pour activer le profilage
d’exécution.

Du point de vue de l’utilisateur, un des aspects gênants
de la chaîne de connexion, et en particulier des arguments
du pilote, est que ceux-ci sont spécifiques à chaque pilote,
et qu’il n’y a donc aucune normalisation alors que, dans
bien des cas, les paramètres sont les mêmes : nom de la
base, éventuels nom d’hôte et numéro de port. Pour ces
raisons, l’un des auteurs a écrit un petit module, DBIx::-
Connect::FromConfig, qui offre une interface un peu plus
homogène :

use DBI ;

use DBIx :: Connect :: FromConfig - in_dbi ;

my % settings = (

driver => " Pg " ,

host => " bigapp - db . society . com " ,

database => " bigapp " ,

username => " appuser " ,

password => " sekr3t " ,

attributes => { AutoCommit => 1,

➥ RaiseError => 1 },

) ;

207

i

i

“perl” — 2010/9/30 — 13:10 — page 208 — #224
i

i

i

i

i

i

CHAPITRE 11 Bases de données SQL

my $dbh = DBI -> connect_from_config (

➥config => \% settings);

C’est déjà intéressant, mais mieux encore, le module peut
prendre l’objet d’un module de configuration en argu-
ment :

my $config = Config :: IniFiles -> new (

➥- file => "/ etc / myprogram / database . conf "

) ;

my $dbh = DBI -> connect_from_config (

➥config => $config);

où le fichier de configuration ressemble à :

[database]

driver = Pg

host = bigapp-db.society.com

database = bigapp

username = appuser

password = sekr3t

attributes = AutoCommit=1|RaiseError=1

Ce qui simplifie la gestion de la configuration lorsqu’une
application doit être déployée dans des environnements
différents (développement, recette, préproduction, pro-
duction).

Tester la connexion
$dbh->ping()

Bien que ce soit rarement nécessaire, il est possible de tes-
ter si la connexion est toujours active (si ce mécanisme est
véritablement codé dans le pilote correspondant).

208

i

i

“perl” — 2010/9/30 — 13:10 — page 209 — #225
i

i

i

i

i

i

Préparer une requête SQL

Se déconnecter
$dbh->disconnect()

Se déconnecter d’une base ne demande qu’un appel à la
méthode disconnect(). À noter qu’elle est automatique-
ment invoquée quand le descripteur de base est sur le
point d’être détruit, par exemple à la fin du bloc où il
a été défini ; mais il est plus propre de l’appeler explicite-
ment. Un avertissement sera affiché si des requêtes étaient
encore actives, par exemple une requête SELECT avec des
données non encore récupérées.

Préparer une requête SQL

$dbh->prepare(. . .)

La manière la plus efficace d’utilisation des requêtes est de
suivre le protocole en quatre étapes : prepare (préparation),
bind (liaison), execute (exécution), fetch (récupération).

La préparation consiste en l’analyse de la requête, soit au
niveau du client (ici, du pilote), soit au niveau du serveur,
afin de vérifier que la syntaxe est correcte, et quand il y en
a de repérer les paramètres. En effet, DBI supporte le pas-
sage de valeurs dans les requêtes au travers de marqueurs
(placeholders), notés par des points d’interrogation :

INSERT INTO users (login , name , group)

➥VALUES (? , ?, ?)

Comme le montre l’exemple, les marqueurs indiquent
l’emplacement de chaque valeur, et ne doivent donc pas

209

i

i

“perl” — 2010/9/30 — 13:10 — page 210 — #226
i

i

i

i

i

i

CHAPITRE 11 Bases de données SQL

être mis entre guillemets, même si la valeur qui sera pas-
sée est une chaîne. Un marqueur ne correspond qu’à une
seule et unique valeur, ce qui interdit de construire une
requête avec un IN (?) en espérant passer plus d’une va-
leur ; il est nécessaire d’expliciter chaque valeur par un
marqueur. La solution pour ce genre de cas est de construire
la requête dynamiquement :

my $list = join " , " , ("?") x @values ;

my $query = " SELECT * FROM library WHERE

➥author IN ($list) ";

Attention

Les marqueurs ne peuvent correspondre qu’à des valeurs, et non
à des noms de table ou de colonne (voir page 223 pour une solu-
tion).

La méthode DBI pour préparer une requête s’appelle tout
simplement prepare() ; elle s’invoque sur un objet DBH
et renvoie un descripteur de requête (STH, statement
handler) :

my $sth = $dbh -> prepare (

" SELECT * FROM library WHERE author LIKE ?"

) ;

Valeurs nulles en SQL

Un point important à noter est que les valeurs NULL (au sens

SQL) sont traduites en Perl par undef. Cela marche aussi bien

en entrée qu’en sortie, mais il faut se souvenir qu’en SQL, va-

lue = NULL doit s’écrire value IS NULL, ce qui nécessite de

traiter différemment les arguments non définis.

210

i

i

“perl” — 2010/9/30 — 13:10 — page 211 — #227
i

i

i

i

i

i

Exécuter une requête SQL

Lier une requête SQL

$str->bind_param(. . .)

Après avoir préparé une requête, les valeurs sont associées
aux marques lors de l’étape de liaison, à l’aide de la mé-
thode bind_param() :

$sth -> bind_param (1 , " Naoki Urasawa ") ;

Le premier argument est le numéro du marqueur (ceux-ci
sont numérotés à partir de 1), le deuxième la valeur. Il est
aussi possible de passer en troisième argument le type SQL
de la valeur :

$sth -> bind_param (1 , " Naoki Urasawa " ,

➥SQL_VARCHAR);

En pratique, cette manière de faire est rarement utilisée car
la liaison peut être réalisée en même temps que l’exécution.

Exécuter une requête SQL

$str->execute(. . .)

Il est possible d’exécuter une requête en liant les para-
mètres en un seul appel à la fonction execute :

$str -> execute (" Naoki Urasawa ") ;

211

i

i

“perl” — 2010/9/30 — 13:10 — page 212 — #228
i

i

i

i

i

i

CHAPITRE 11 Bases de données SQL

Récupérer les données de retour
d’une requête SQL
La récupération des enregistrements se fait à l’aide des mé-
thodes fetchxxx_yyy(). La partie xxx du nom correspond à
la manière de récupérer les enregistrements, soit un par un
(row), soit tout d’un coup (all). La partie yyy du nom est
la forme sous laquelle DBI va fournir les données : tableau
direct (array), référence de tableau (arrayref), référence
de hash (hashref).

Ainsi, avec la requête précédente, un appel à fetchrow-

_array() donnera :

my @row = $sth -> fetchrow_array () ;

@row = (" PLUTO volume 1" , "2010 -02 -19" ,

" Naoki Urasawa ", " Kana ")

@row reçoit les valeurs du premier enregistrement, dans
l’ordre des colonnes indiqué dans le SELECT ou dans l’ordre
naturel (typiquement, celui de création). Même chose avec
fetchrow_arrayref() :

my $row = $sth -> fetchrow_arrayref () ;

$row = [" PLUTO volume 1" , "2010 -02 -19" ,

" Naoki Urasawa ", ...]

fetchrow_hashref() renvoie l’enregistrement sous forme
d’une référence de hash, avec les colonnes en clés :

my $row = $sth -> fetchrow_hashref () ;

$row = { title => " PLUTO volume 1" ,

date => "2010 -02 -19" ,

author => " Naoki Urasawa ", ... }

212

i

i

“perl” — 2010/9/30 — 13:10 — page 213 — #229
i

i

i

i

i

i

Récupérer les données de retour d’une requête SQL

Bien sûr, les appels successifs à ces méthodes permettent
de récupérer les enregistrements au fur et à mesure ; elles
renvoient faux quand il n’y a plus d’enregistrement :

while (my $book = $sth -> fetchrow_hashref ()){

print "* $book - >{ title } ($book - >{ date }) \n ";

}

affiche :

* PLUTO volume 1 (2010 -02 -19)

* PLUTO volume 2 (2010 -02 -19)

* PLUTO volume 3 (2010 -04 -02)

...

fetchall_arrayref() renvoie assez simplement tous les en-
registrements dans une référence de tableau englobant :

my $books = $sth -> fetchall_arrayref () ;

$books = [

[" PLUTO volume 1" , "2010 -02 -19" ,

➥" Naoki Urasawa "],

[" PLUTO volume 2" , "2010 -02 -19" ,

➥" Naoki Urasawa "],

[" PLUTO volume 3" , "2010 -04 -02" ,

➥" Naoki Urasawa "],

...

]

fetchall_hashref() est un peu plus subtile. Elle attend
comme argument le nom d’une colonne qui fait office de
clé, c’est-à-dire d’identifiant unique de chaque enregis-
trement. Cela permet ainsi d’accéder à chaque champ de
manière directe :

my $library = $sth -> fetchall_hashref (" title ");

$library = {

" PLUTO volume 1" => {

date => "2010 -02 -19" , author =>

➥ " Naoki Urasawa " ,

},

" PLUTO volume 2" => {

date => "2010 -02 -19" , author =>

213

i

i

“perl” — 2010/9/30 — 13:10 — page 214 — #230
i

i

i

i

i

i

CHAPITRE 11 Bases de données SQL

➥ " Naoki Urasawa " ,

},

" PLUTO volume 3" => {

date => "2010 -04 -02" , author =>

➥ " Naoki Urasawa " ,

},

...

}

S’il n’y a pas une colonne pour identifier de manière unique
chaque enregistrement, une référence vers un tableau de
clés peut être fournie à la méthode, qui construira le hash
résultat avec autant de niveaux de profondeur que de clés.

my $sth = $dbh -> prepare (q{

SELECT host , service , id , type ,

level , time , message

FROM events

WHERE type = ? AND level = ?

}) ;

$sth -> execute (" persistent " , " error ") ;

my $events = $sth -> fetchall_hashref (

[" host " , " service " , " id "]

);

say " from $host : . $events - >{ $host }

➥{ $service }{ $id }{ message }";

Combiner les étapes d’exécution
d’une requête SQL
Dans le cas particulier des requêtes SELECT, il existe des
méthodes permettant de combiner les quatre étapes en
une seule : selectrow_array(), selectrow_arrayref(), se-
lectrow_hashref(), selectall_arrayref() et selectall-

_hashref().

214

i

i

“perl” — 2010/9/30 — 13:10 — page 215 — #231
i

i

i

i

i

i

Combiner les étapes d’exécution d’une requête SQL

my @row = $dbh -> selectrow_array (

" SELECT name FROM users WHERE id = ? " ,

➥ {} , $id

) ;

Le second argument de la méthode est une référence vers
un hash, vide dans l’exemple, qui accepte des attributs
(comme RaiseError) qui seront positionnés juste pour cette
requête.

Pour les requêtes, hors SELECT, qui n’ont pas besoin d’être
exécutées de nombreuses fois, la méthode do() permet de
tout faire d’un coup :

$dbh -> do (" TRUNCATE logs ");

Bien sûr, les requêtes peuvent contenir des marqueurs, les
valeurs étant passées de manière similaire aux méthodes
selectxxx() :

my $n = $dbh -> do (

" DELETE FROM events WHERE host =? AND

➥ service =? " ,

{} , $host , $service ,

) ;

La méthode renvoie le nombre de lignes affectées par la
requête, undef en cas d’erreur et -1 si le nombre n’est pas
connu ou n’a pas de sens.

Cette mécanique peut sembler un peu lourde, mais elle
permet en réalité d’obtenir de très bonnes performances,
en particulier quand les méthodes les plus rapides (comme
fetchrow_arrayref()) sont utilisées. DBI dispose d’autres
mécanismes pour gagner encore en performance, comme
par exemple bind_col(), mais ils ne seront pas abordés
car les quelques méthodes présentées ici permettent déjà
d’obtenir de très bons résultats.

215

i

i

“perl” — 2010/9/30 — 13:10 — page 216 — #232
i

i

i

i

i

i

CHAPITRE 11 Bases de données SQL

Mise en cache et sécurité

Un point fondamental à comprendre est que la préparation
d’une requête autorise bien plus facilement la mise en cache
de celle-ci, ce qui permet de la réutiliser par la suite plus ra-
pidement. L’utilisation des marqueurs est de ce point de vue
essentielle pour deux raisons. D’une part, cela garantit que le
texte de la requête ne change pas, et donc qu’il s’agit bien de la
même requête. D’autre part, l’interpolation des valeurs conduit
immanquablement à des problèmes de sécurité, les fameuses
injections SQL. Il n’existe aucun moyen fiable d’exécuter des
requêtes avec des données interpolées. La seule manière est
justement de remplacer les valeurs par des marqueurs, et
d’établir a posteriori une correspondance entre chaque mar-
queur et sa valeur.

Étant donné que ce principe offre à la fois sécurité et rapi-

dité, les quelques rares inconvénients qui peuvent exister sont

plus que largement compensés par la tranquillité d’esprit qu’il

procure.

Gérer les erreurs
$h->err $h->errstr $DBI::err $DBI::errstr

Pour vérifier si une erreur s’est produite (si RaiseError

n’est pas utilisé), DBI fournit la méthode err() qui du
point de vue utilisateur final renvoie un booléen (en pra-
tique, il s’agit d’un code d’erreur, mais dont la significa-
tion n’a généralement de sens que pour le pilote). Pour
avoir le détail de l’erreur, c’est la méthode errstr() qui
doit être utilisée. Les valeurs de ces méthodes ont une du-

216

i

i

“perl” — 2010/9/30 — 13:10 — page 217 — #233
i

i

i

i

i

i

Tracer l’exécution

rée de vie assez courte, car elles sont remises à zéro par un
appel à la plupart des autres méthodes.

if ($sth -> err) {

die " erreur : " , $sth -> errstr ;

}

Il existe aussi des variables globales $DBI::err et $DBI:err-
str qui ont pour valeur celles des méthodes err() et err-
str() du dernier descripteur qui a été utilisé. Il est sans
surprise déconseillé de les utiliser et il faut leur préférer les
méthodes correspondantes.

Tracer l’exécution
DBI_TRACE $h->{TraceLevel} trace()

DBI intègre un mécanisme pour tracer l’exécution des re-
quêtes afin de faciliter la recherche des problèmes. Celui-
ci peut s’activer de plusieurs manières :

● par la variable d’environnement $DBI_TRACE ;

● par l’attribut TraceLevel ;

● par la méthode trace().

La valeur à passer est le niveau de verbosité souhaité de la
trace. En pratique, la valeur 2 est la plus appropriée pour
commencer car elle affiche l’ensemble des valeurs passées
en argument. Ainsi, le code suivant :

$dbh -> trace (2) ;

my $sth = $dbh -> prepare (q{

INSERT INTO events (host , service , id ,

➥ message)

VALUES (? , ?, ?, ?)

}) ;

217

i

i

“perl” — 2010/9/30 — 13:10 — page 218 — #234
i

i

i

i

i

i

CHAPITRE 11 Bases de données SQL

$sth -> execute (’ns . domain . com ’, ’ dns ’,

➥ 123 , ’ dns system ok ’

) ;

affiche cette trace :

DBI::db=HASH(0x186ba18) trace level set to 0x0/2 (DBI @ 0x0/0)

in DBI 1.609-ithread (pid 7346)

-> prepare for DBD::SQLite::db (DBI::db=HASH(0x186ba60)~0x186ba18 ’

INSERT INTO events (host, service, id, message) VALUES (?, ?, ?, ?)

’) thr#1800400

<- prepare= DBI::st=HASH(0x1847a70) at dbi-trace line 15

-> execute for DBD::SQLite::st (DBI::st=HASH(0x1847a70)~0x186bc88

’ns.domain.com’ ’dns’ 123 ’dns system ok’) thr#1800400

<- execute= 1 at dbi-trace line 18

-> DESTROY for DBD::SQLite::st (DBI::st=HASH(0x186bc88)~INNER)

thr#1800400

<- DESTROY= undef

-> DESTROY for DBD::SQLite::db (DBI::db=HASH(0x186ba18)~INNER)

thr#1800400

<- DESTROY= undef

La variable d’environnement présente l’avantage d’activer
les traces sans modifier le programme :

DBI_TRACE =2 perl dbi - program ...

Par contre, l’attribut permet d’activer la trace de manière
locale à un bloc :

{

seules les requêtes créées dans ce

bloc

seront tracées

local $dbh - >{ TraceLevel } = 2;

...

}

Cet attribut est comme beaucoup d’autres hérité par les
requêtes du descripteur de base à partir duquel elles sont
créées :

218

i

i

“perl” — 2010/9/30 — 13:10 — page 219 — #235
i

i

i

i

i

i

Profiler l’exécution

my $sth ;

{

local $dbh - >{ TraceLevel } = 2;

$sth = $dbh -> prepare (" ... ");

}

cet appel sera tracé en sortie

$sth -> execute ;

La méthode permet de rediriger la trace, par défaut affi-
chée sur la sortie d’erreur, vers un fichier ou un descrip-
teur de fichier :

$fh = IO :: File -> new (" > trace . log ") ;

$h -> trace (2 , $fh);

Profiler l’exécution
DBI_PROFILE $h->{Profile}

DBI intègre un profileur très abouti, disposant de plusieurs
interfaces pour y accéder. Seule la première sera vérita-
blement présentée ici mais elle convient à la plupart des
besoins. Un peu comme avec les traces, le profileur peut
se contrôler d’une part avec la variable d’environnement
$DBI_PROFILE, d’autre part avec l’attribut Profile. Dans les
deux cas, il suffira d’affecter une valeur décrivant le pro-
filage à effectuer. Dans sa forme la plus simple, il s’agira
d’une valeur numérique, en particulier 2 qui affiche un
rapport indiquant le coût et l’utilisation de chaque requête
exécutée :

$ DBI_PROFILE=2 perl init-database.pl

DBI::Profile: 0.230871s 23.09% (47 calls) dbi-profile @ 2010-08-30

219

i

i

“perl” — 2010/9/30 — 13:10 — page 220 — #236
i

i

i

i

i

i

CHAPITRE 11 Bases de données SQL

02:42:09

’’ => 0.007850s / 13 = 0.000604s avg (first 0.007669s, min

0.000004s, max 0.007669s)

’CREATE TABLE events (host varchar, service varchar, id integer,

message varchar)’ =>

0.052813s

’INSERT INTO events (host, service, id, message) VALUES

(?, ?, ?, ?)’ => 0.170209s / 33 = 0.005158s avg (first 0.000345s,

min 0.000043s, max 0.017538s)

Les valeurs indiquées pour la requête vide correspondent
en réalité au temps passé dans les méthodes propres au des-
cripteur de base de données (connexion, affectation des
attributs, etc). Pour les autres requêtes, cela correspond au
temps total passé que chacune a consommé. Dans le cas
du INSERT, la requête a été préparée une fois puis exécu-
tée 30 fois, ce qui signifie que le profileur a aussi compté
deux appels internes. Pour avoir plus de détails, il suf-
fit d’augmenter la valeur passée à $DBI_PROFILE à 6, qui
affiche pour chaque requête le temps passé dans chaque
méthode :

’INSERT INTO events (host, service, id, message) VALUES

(?, ?, ?, ?)’ => ’DESTROY’ =>

0.002115s / 2 = 0.001058s avg (first 0.000043s, min 0.000043s,

max 0.002072s)

’execute’ =>

0.331492s / 30 = 0.011050s avg (first 0.011977s, min 0.004121s,

max 0.057116s)

’prepare’ =>

0.000341s

Le profileur de base accepte une configuration plus pous-
sée au travers d’arguments comme !File, qui groupe les
résultats par nom de fichiers, ou !Time∼N, qui permet de
grouper les résultats par tranche de N secondes :

$ DBI_PROFILE=’!File:!Time~2:!Statement’ perl init-database.pl

DBI::Profile: 1.437674s 143.77% (317 calls) dbi-profile

@ 2010-08-30 03:26:14

’1283131572’ => ’’ =>

220

i

i

“perl” — 2010/9/30 — 13:10 — page 221 — #237
i

i

i

i

i

i

Profiler l’exécution

0.007492s / 12 = 0.000624s avg (first 0.007335s, min 0.000003s,

max 0.007335s)

’INSERT INTO events (host, service, id, message) VALUES

(?, ?, ?, ?)’ =>

0.490690s / 85 = 0.005773s avg (first 0.000342s, min 0.000342s,

max 0.033933s)

’CREATE TABLE events (host varchar, service varchar, id integer,

message varchar)’ =>

0.053218s

’1283131574’ => ’’ =>

0.000024s

’INSERT INTO events (host, service, id, message) VALUES

(?, ?, ?, ?)’ =>

0.886250s / 218 = 0.004065s avg (first 0.003718s, min 0.000041s,

max 0.029571s)

Seule la surface du profileur PERMOD:DBI a été abor-
dée. Même l’interface « simple » offre déjà une configu-
ration assez poussée au travers de l’objet DBI::Profile qui
peut être affecté à l’attribut Profile. L’utilisateur avec des
besoins plus avancés se tournera vers DBI::ProfileDumper,
qui permet d’enregistrer les résultats du profilage sur dis-
que, et la commande dbiprof pour les exploiter.

En reprenant l’exemple précédent, les commandes sui-
vantes permettent de voir quelle est la requête la plus
consommatrice :

$ DBI_PROFILE=6/DBI::ProfileDumper perl init-database.pl

$ dbiprof --sort count --number 1

DBI Profile Data (DBI::ProfileDumper 2.009894)

Program : pad/dbi-profile

Path : [!Statement, !MethodName]

Total Records : 9 (showing 1, sorted by count)

Total Count : 317

Total Runtime : 2.252447 seconds

#####[1]###

Count : 300

Total Time : 1.976474 seconds

221

i

i

“perl” — 2010/9/30 — 13:10 — page 222 — #238
i

i

i

i

i

i

CHAPITRE 11 Bases de données SQL

Longest Time : 0.204763 seconds

Shortest Time : 0.002353 seconds

Average Time : 0.006588 seconds

Key 1 : INSERT INTO events (host, service,

id, message) VALUES (?, ?, ?, ?)

Key 2 : execute

222

i

i

“perl” — 2010/9/30 — 13:10 — page 223 — #239
i

i

i

i

i

i

12
Abstraction du SQL,

ORM et bases
non-SQL

DBI (voir page 203) permet l’exécution de requêtes para-
métrées, autorisant un passage de valeurs de manière sûre,
sans risque d’injection SQL. Mais comme il faut passer
les valeurs dans l’ordre de définition des paramètres, les
requêtes deviennent rapidement peu confortables à gérer
au-delà de trois ou quatre paramètres. Certains pilotes au-
torisent l’utilisation de marqueurs nommés, mais ils sont
rares, et forcément ce n’est pas portable.

Pour contourner cette limitation, il faut passer par un mo-
dule d’abstraction du SQL. Parmi les différents disponibles
sur CPAN, il en existe un qui constitue un bon com-
promis entre abstraction et simplicité d’utilisation, Data::-
Phrasebook::SQL.

Utiliser Data::Phrasebook::SQL
Il s’agit d’un module faisant partie de Data::Phrasebook,
qui est un système de gestion de dictionnaires. Le principe
est de rassembler en un seul endroit des chaînes de texte

i

i

“perl” — 2010/9/30 — 13:10 — page 224 — #240
i

i

i

i

i

i

CHAPITRE 12 Abstraction du SQL, ORM et bases non-SQL

qui peuvent apparaître à plusieurs emplacements du code,
par exemple les messages d’erreurs. Si cela paraît confus,
pensez aux bibliothèques comme gettext : au final, il
s’agit de récupérer la chaîne correspondant à un identi-
fiant (généralement la chaîne en anglais) et à la langue
destination, toutes les chaînes étant stockées dans les fa-
meux fichiers .po, qui constituent autant de dictionnaires.
Par rapport à gettext, l’intérêt de Data::Phrasebook est
qu’il supporte de nombreux formats de fichiers, et surtout
autorise des variables de remplacement, un peu comme
dans un système de templates.

Data::Phrasebook::SQL est donc une sous-classe de Data::-
Phrasebook spécialisée dans la gestion de dictionnaires SQL
et dans l’exécution de ces requêtes au travers de DBI. Le
gros intérêt est que cela permet une séparation entre le
code Perl et le code SQL, ce qui est généralement consi-
déré comme une bonne pratique.

Une combinaison intéressante est d’utiliser YAML comme
format de stockage, car il permet d’écrire les requêtes de
manière aérée et naturelle. Le cas d’utilisation qui va servir
d’exemple est adapté d’une situation rencontrée par l’un
des auteurs, qui sans l’aide de Data::Phrasebook::SQL au-
rait dû écrire des dizaines et des dizaines de requêtes SQL
toutes semblables. Le seul vrai défaut de ce module est de
pécher au niveau de la documentation, ce qui rend son
apprentissage moins aisé qu’il ne devrait être.

À l’utilisation, le module s’avère par contre véritablement
agréable, car il s’agit au final d’une surcouche assez fine
au-dessus de DBI, qui ne perturbe pas l’utilisateur habitué
à ce dernier. Data::Phrasebook::SQL attend d’ailleurs de
l’utilisateur qu’il lui fournisse le descripteur de base, l’ins-
tanciation à partir des requêtes stockées dans un fichier
YAML ressemblant à ceci :

224

i

i

“perl” — 2010/9/30 — 13:10 — page 225 — #241
i

i

i

i

i

i

Utiliser Data::Phrasebook::SQL

my $book = Data :: Phrasebook -> new (

class => " SQL " , dbh => $dbh ,

loader => " YAML " , file => " queries . yaml " ,

) ;

Pour planter le contexte, considérons une base de don-
nées assez classique avec une table qui contient des infor-
mations sur des serveurs :

CREATE TABLE hosts (

host_id integer, -- ID du serveur

host_name varchar, -- nom du serveur

hard_id integer, -- ID du matériel

site_id integer, -- ID du site

cust_id integer, -- ID du client

PRIMARY KEY (host_id)

);

En DBI classique, la requête pour trouver l’ID d’un serveur
à partir de son nom s’écrit :

my $sth = $dbh -> prepare (

" SELECT host_id FROM hosts WHERE

➥ host_name = ? "

) ;

$sth -> execute ($name);

my ($id) = $sth -> fetchrow_array ;

Avec Data::Phrasebook::SQL, la requête est stockée dans
un fichier, ici YAML, et est donc nommée :

get_host_id: |

SELECT host_id

FROM hosts

WHERE host_name = :host_name

La barre verticale qui suit le deux-points est la syntaxe
YAML qui signale que le bloc de lignes qui suit, jus-
qu’à la prochaine ligne vide, est à affecter comme valeur à

225

i

i

“perl” — 2010/9/30 — 13:10 — page 226 — #242
i

i

i

i

i

i

CHAPITRE 12 Abstraction du SQL, ORM et bases non-SQL

get_host_id. :host_name est la syntaxe Data::Phrasebook

pour écrire un marqueur nommé host_name.

Côté Perl, le code devient :

my $qry = $book -> query (" get_host_id ");

$qry -> execute (host_name => $host_name);

my ($host_id) = $qry -> fetchrow_array ;

Par rapport à DBI, la requête est récupérée et préparée
en indiquant simplement son nom, qui fournit un ob-
jet comparable au descripteur de requête de DBI. Par
contre, sa méthode execute() reçoit maintenant les va-
leurs sous forme paramétrée, attendant comme noms ceux
des marqueurs de la requête. La récupération des résultats
est quant à elle identique au cas DBI.

Pour les besoins de l’application et de l’exemple, consi-
dérons qu’il est nécessaire de pouvoir accéder à chaque
champ de manière indépendante. Avec DBI, il faut alors
écrire une requête pour chaque champ. Avec Data::Phrase-
book::SQL, ce n’est qu’une question de remplacement de
marqueurs. Ainsi, côté SQL :

get_host_field: |

SELECT :host_field

FROM sys_hosts

WHERE host_id = :host_id

et côté Perl :

my $qry = $hosts -> query (

" get_host_field " ,

replace => { host_field => " hard_id " },

) ;

$qry -> execute (host_id => $host_id);

my ($hard_id) = $qry -> fetchrow_array ;

226

i

i

“perl” — 2010/9/30 — 13:10 — page 227 — #243
i

i

i

i

i

i

Utiliser Data::Phrasebook::SQL

Le seul ajout est celui du replace dans l’appel de query()

qui indique les marqueurs à substituer pour générer la re-
quête SQL (ce qui constitue la partie templating), les mar-
queurs restants étant remplacés lors de l’appel à execute()

(ce qui constitue la partie paramètres nommés).

Si ce mécanisme semble trop lourd pour répondre à un
besoin ici assez simple, il suffit de corser un peu la donne
en ajoutant quelque chose de typique dans les grosses bases
de données : un système de propriétés génériques.

CREATE TABLE prop_list (

prop_id integer, -- ID de la propriété

prop_name varchar, -- nom de la propriété

prop_type varchar, -- type de la propriété

PRIMARY KEY (prop_id)

);

CREATE TABLE prop_values (

val_id integer, -- ID de la valeur de propriété

val_prop_id integer, -- ID de la propriété

val_host_id integer, -- ID de l’hôte associé

val_t_bool boolean, -- champ pour valeur booléenne

val_t_int integer, -- champ pour valeur entière

val_t_float float, -- champ pour valeur flottante

val_t_char varchar, -- champ pour une courte chaîne

val_t_text text, -- champ pour du texte long

val_t_date date, -- champ pour une date

PRIMARY KEY (val_id)

);

Avec Data::Phrasebook::SQL, écrire les requêtes pour gé-
rer cela est confondant de simplicité. Il suffit en effet de
quatre requêtes :

227

i

i

“perl” — 2010/9/30 — 13:10 — page 228 — #244
i

i

i

i

i

i

CHAPITRE 12 Abstraction du SQL, ORM et bases non-SQL

fetch_properties: |

SELECT prop_name, prop_id, prop_type

FROM prop_list

get_property_value: |

SELECT :prop_field

FROM prop_values

WHERE val_host_id = :host_id

AND val_prop_id = :prop_id

insert_property_value: |

INSERT INTO prop_values

(:prop_field, val_host_id, val_prop_id)

VALUES (:prop_value, :host_id, :prop_id)

update_property_value: |

UPDATE prop_values

SET :prop_field = :prop_value

WHERE val_host_id = :host_id

AND val_prop_id = :prop_id

et de deux fonctions :

use constant { ID => 0, TYPE => 1 };

my $fetch_properties_qry =

➥$self -> query (" fetch_properties ") ;

$fetch_properties_qry -> execute ;

l ’ instruction suivante construit un hash

avec en clé les noms des propriétés et en

valeur un arrayref qui contient l ’ID et

le type de la propriété

my % property = map { shift @$_ , $_ }

➥@{ $fetch_properties_qry ->

➥fetchall_arrayref };

sub get_property {

my ($host_id , $prop_name) = @_ ;

détermination de l ’ ID et du type de la

228

i

i

“perl” — 2010/9/30 — 13:10 — page 229 — #245
i

i

i

i

i

i

Utiliser Data::Phrasebook::SQL

propriété , et donc du champ à attaquer

my $prop_id = $property { $prop_name }[ID];

my $prop_type = $property { $prop_name }

➥ [TYPE];

my $prop_field = " val_t_$prop_type " ;

my $get_prop_qry = $book -> query (

" get_property_value " ,

replace => { prop_field => $prop_field }

);

$get_prop_qry -> execute (

host_id => $host_id ,

prop_id => $prop_id ,

);

my ($prop_value) = $get_prop_sth ->

fetchrow_array ;

return $prop_value

}

sub set_property {

my ($host_id , $prop_name , $prop_value)

➥ = @_ ;

détermination de l ’ID et du type de la

propriété , et donc du champ à attaquer

my $prop_id = $property { $prop_name }[ID];

my $prop_type = $property { $prop_name }

➥ [TYPE];

my $prop_field = " val_t_$prop_type ";

récupération de l ’ éventuelle ancienne

valeur pour savoir quelle requête

(INSERT ou UPDATE) utiliser

my $old_value = get_property ($host_id ,

➥ $prop_name) ;

my $set_prop_qry ;

229

i

i

“perl” — 2010/9/30 — 13:10 — page 230 — #246
i

i

i

i

i

i

CHAPITRE 12 Abstraction du SQL, ORM et bases non-SQL

if (defined $old_value) {

if ($prop_value eq $old_value) {

petite optimisation , la valeur

existait mais n ’a pas changée

=> rien à faire

return

}

else {

la valeur existait et doit changer

=> UPDATE

$set_prop_sth = $self -> query (

" update_property_value " ,

replace => { prop_field

➥ => $prop_field }

);

}

}

else {

il n ’y avait pas de valeur => INSERT

$set_prop_sth = $self -> query (

" insert_property_value " ,

replace => { prop_field

➥ => $prop_field }

) ;

}

$set_prop_sth -> execute (

host_id => $host_id ,

prop_id => $prop_id ,

prop_value => $prop_value ,

);

}

Certes, le code peut sembler un peu complexe au pre-
mier abord, mais il est globalement court et facile à suivre.
L’exemple présenté est une version réduite du système
écrit par l’auteur qui utilise Data::Phrasebook::SQL en pro-
duction, et qui permet de gérer l’ajout dynamique de pro-
priétés et supporte des valeurs énumérées. L’ajout d’une
nouvelle propriété se résume à une simple insertion dans

230

i

i

“perl” — 2010/9/30 — 13:10 — page 231 — #247
i

i

i

i

i

i

Utiliser Data::Phrasebook::SQL

la table prop_list. L’ensemble étant de plus encapsulé de
manière objet, les propriétés deviennent des attributs de
l’objet, et le code final qui met à jour les propriétés res-
semble à ceci :

my $host = Hebex :: SysInfo :: DWH :: Host -> new (

host_name => $hostname

);

general operating system information

my $os_prop = os_properties ($xmldoc) ;

$host -> os_type ($os_prop - >{ type });

$host -> os_name ($os_prop - >{ name });

$host -> os_kernel ($os_prop - >{ kernel });

$host -> os_version ($os_prop - >{ version });

CPU information

$host -> cpu_name (

$xmldoc -> findvalue ("/ conf / processor / name ")

) ;

$host -> cpu_vendor (

$xmldoc -> findvalue ("/ conf / processor /

➥ vendor ")

) ;

$host -> cpu_quantity (

$xmldoc -> findvalue ("/ conf / processor /

➥ quantity ")

) ;

$host -> cpu_frequency (

$xmldoc -> findvalue ("/ conf / processor /

➥ frequency ")

) ;

$host -> cpu_cache (

$xmldoc -> findvalue ("/ conf / processor /

➥ cache ")

) ;

network information

$host -> default_gateway ($default_gateway) ;

231

i

i

“perl” — 2010/9/30 — 13:10 — page 232 — #248
i

i

i

i

i

i

CHAPITRE 12 Abstraction du SQL, ORM et bases non-SQL

L’auteur ne prétend pas que ceci est la meilleure manière
de procéder, mais affirme en tout cas que cela marche
bien. . . Et s’il est vrai que la complexité globale de l’ap-
plicatif n’est pas triviale, la complexité locale de chaque
composant est très raisonnable, ce qui assure une mainte-
nance plus facile du code. La séparation entre le code SQL
et le code Perl est un point important, qui permet le par-
tage du SQL entre plusieurs programmes indépendants,
évitant les problèmes liés par exemple aux modifications
de schéma.

ORM avec DBIx::Class

Perl dispose, depuis de nombreuses années, de frameworks
ORM qui apparaissent au fur et à mesure de l’apparition
de nouveaux besoins en capitalisant l’expérience acquise
sur le framework précédent. Ainsi, le monde Perl a vu se
succéder des modules comme MLDBM qui dès 1996 s’ap-
puyait sur des bases BerkeleyDB pour stocker des struc-
tures Perl, puis Alzabo, Pixie et SPOPS au début des an-
nées 2000, suivis des excellents Tangram et Class::DBI

jusqu’au milieu de cette même décennie.

ORM

Un ORM (Object-Relational Mapping) est un mécanisme per-
mettant de transformer une base de données en une collection
d’objets au niveau du langage de programmation. Il existe des
ORM dans tous les langages.

Le point important d’un ORM est de pouvoir interroger une

base sans jamais devoir écrire de requêtes SQL, le moteur de

l’ORM se chargeant de les générer, les exécuter et de traduire

les résultats sous forme objet, la seule que voit l’utilisateur.

232

i

i

“perl” — 2010/9/30 — 13:10 — page 233 — #249
i

i

i

i

i

i

ORM avec DBIx::Class

L’intérêt, outre la manipulation d’objets rendue a priori plus

facile – comparée à la manipulation d’enregistrements rela-

tionnels –, réside dans l’ajout d’un étage qui constitue une

copie locale des données de la base, offrant une plus grande

liberté pour travailler les relations entre ces données. Cela im-

plique par contre de devoir synchroniser les objets en retour

sur la base, pour sauver les modifications, et afin que cela

fonctionne correctement, que le schéma des classes d’objets

soit en concordance avec le schéma de la base.

Depuis 2005, l’ORM en Perl se réalise principalement au
travers de DBIx::Class, qui est originellement né du be-
soin d’une refonte de Class::DBI pour le framework web
Catalyst. DBIx::Class est en réalité un framework pour
créer des ORM ; mais proposant par défaut une API (ori-
ginellement celle de Class::DBI), il est donc suffisamment
extensible pour que le besoin d’un nouveau modèle ne se
fasse pas sentir pour le moment, du moins dans le cadre
des bases SQL relationnelles.

DBIx::Class rend les opérations de manipulation et de
synchronisation très simples. Il sait créer une base à par-
tir d’un schéma objet, et inversement il sait construire un
modèle objet à partir d’une base existante. Il propose éga-
lement des outils facilitant la migration et la mise à jour de
schémas.

Dans le schéma objet de DBIx::Class, les tables sont défi-
nies par des classes Result qui indiquent leurs colonnes et
relations avec les autres tables.

Les requêtes pour interroger ces tables sont modélisées par
des classes ResultSet. Un point intéressant à noter est que
l’utilisation d’un ResultSet ne génère pas d’accès à la base.
Seule la récupération des données va effectivement exé-
cuter les requêtes SQL sous-jacentes et rapatrier les enre-

233

i

i

“perl” — 2010/9/30 — 13:10 — page 234 — #250
i

i

i

i

i

i

CHAPITRE 12 Abstraction du SQL, ORM et bases non-SQL

gistrements. Le but est de permettre de travailler le plus
possible sur des ensembles virtuels, afin d’économiser les
accès à la base.

Les données sont fournies sous la forme d’objets DBIx::-
Class::Row.

Créer un schéma DBIx::Class

Sans grande originalité, l’exemple typique du monde des
ORM sera utilisé ici, soit une base de données référençant
une collection musicale. Son schéma SQL est le suivant :

CREATE TABLE artist (

artist_id INTEGER PRIMARY KEY,

name TEXT NOT NULL

);

CREATE TABLE album (

album_id INTEGER PRIMARY KEY,

artist INTEGER NOT NULL

REFERENCES artist(artist_id),

title TEXT NOT NULL

);

CREATE TABLE track (

track_id INTEGER PRIMARY KEY,

album INTEGER NOT NULL

REFERENCES album(album_id),

title TEXT NOT NULL

);

Il convient de définir les quelques classes mentionnées, en
commençant par la classe mère Schema :

234

i

i

“perl” — 2010/9/30 — 13:10 — page 235 — #251
i

i

i

i

i

i

Créer un schéma DBIx::Class

package MusicDB :: Schema ;

use parent qw < DBIx :: Class :: Schema >;

my $class = __PACKAGE__ ;

$class -> load_namespaces () ;

1;

Puis une classe Result correspondant à une table artist :

package MusicDB :: Schema :: Result :: Artist ;

use parent qw < DBIx :: Class :: Core >;

my $class = __PACKAGE__ ;

$class -> table (" artist ");

$class -> add_columns (qw < artist_id name >);

$class -> set_primary_key (" artist_id ") ;

$class -> has_many (

albums => " MusicDB :: Schema :: Result :: Album "

);

1;

Une classe pour la table album :

package MusicDB :: Schema :: Result :: Album ;

use parent qw < DBIx :: Class :: Core >;

my $class = __PACKAGE__ ;

$class -> load_components (" InflateColumn ::

➥DateTime ");

$class -> table (" album ");

$class -> add_columns (qw < album_id artist_id

➥title year >);

$class -> set_primary_key (" album_id ");

$class -> belongs_to (

artist => " MusicDB :: Schema :: Artist " ,

" artist_id ") ;

1;

235

i

i

“perl” — 2010/9/30 — 13:10 — page 236 — #252
i

i

i

i

i

i

CHAPITRE 12 Abstraction du SQL, ORM et bases non-SQL

Et enfin une classe pour la table track :

package MusicDB :: Schema :: Result :: Track ;

use parent qw < DBIx :: Class :: Core >;

my $class = __PACKAGE__ ;

$class -> table (" track ");

$class -> add_columns (qw < track_id album

➥title >) ;

$class -> set_primary_key (" track_id ");

$class -> belongs_to (

album => " MusicDB :: Schema :: Result :: Album " ,

" album_id ");

En fait, ces classes sont terriblement sommaires, afin de
rester lisibles, mais il manque ici toute la notion de typage,
alors que DBIx::Class permet des définitions de types et
de relations au moins aussi avancées qu’en SQL. Tou-
tefois, cela ne présente que peu d’intérêt de devoir tout
écrire à la main, surtout quand il existe déjà un module
pouvant s’en charger, DBIx::Class::Schema::Loader.

Comme son nom l’indique, ce module charge le schéma
depuis la base de données pour en extraire le plus d’in-
formations possible et générer les classes Perl correspon-
dantes. Il est fourni avec une commande dbicdump qui
simplifie encore le travail. Son utilisation est la suivante :

dbicdump [-o <opt>=<value>] <schema> <connect_info>

où opt est une option de DBIx::Class::Schema::Loader::-
Base, schema le nom de la classe de base qui définit le
schéma et connect_info les informations de connexion,
c’est-à-dire le DSN et les éventuels nom d’utilisateur et
mot de passe.

Avec l’exemple précédent, la commande à exécuter est :

dbicdump -o dump_directory=lib MusicDB::Schema \

’dbi:SQLite:dbname=music.db’

236

i

i

“perl” — 2010/9/30 — 13:10 — page 237 — #253
i

i

i

i

i

i

Utiliser un schéma DBIx::Class

et elle génère dans le répertoire lib/ les classes précédem-
ment montrées, mais en bien mieux car celles-ci com-
prennent maintenant toutes les informations de types et
de relations extraites du schéma SQL. Et de plus, les mo-
dules disposent d’une documentation minimale rappelant
ces informations.

Utiliser un schéma DBIx::Class

Il faut avant tout charger le schéma et se connecter à la
base :

use MusicDB ;

my $music = MusicDB -> connect (" dbi : SQLite :

➥dbname = music . db ") ;

Un album peut alors se récupérer directement par son
identifiant, au travers du ResultSet correspondant de la
table album :

my $album = $music -> resultset (" Album ") ->

➥find (32) ;

L’objet représente une copie en mémoire de l’enregistre-
ment en base de l’album, directement modifiable :

$album -> title (" Fairy Dance ");

Pour reporter les modifications en base, il faut invoquer la
méthode update() :

$album -> update ;

Et inversement, pour jeter d’éventuelles modifications lo-
cales :

$album -> discard_changes if $album ->

➥is_changed ;

237

i

i

“perl” — 2010/9/30 — 13:10 — page 238 — #254
i

i

i

i

i

i

CHAPITRE 12 Abstraction du SQL, ORM et bases non-SQL

Une recherche à partir du nom de l’artiste peut se réaliser
au travers d’un ResultSet :

my $rs = $music -> resultset (" Album ") -> search (

{ artist => " Kokia " }

) ;

qui peut se parcourir comme un itérateur :

while (my $album = $rs -> next) {

say $album -> title ;

}

En contexte de liste, search() renvoie directement les ob-
jets résultat :

my @albums = $music -> resultset (" Album ") ->

➥search (

{ artist => " Aural Vampire " }

) ;

Stocker des objets avec KiokuDB
Si les ORM offrent une représentation objet d’une base
de données, ils ne permettent toutefois pas directement
de stocker des objets Perl natifs. Les premières tentatives
en la matière ne sont pas récentes puisque c’était l’un des
buts de Pixie dès 2000. Toutefois, la tâche n’était pas aisée
à cause du modèle objet de base, très (trop) laxiste. De-
puis, un changement est survenu avec Moose, et surtout le
mécanisme sous-jacent, le protocole méta-objet (MOP),
qui permet de construire des classes et des objets avec des
fonctionnalités avancées, tout en conservant une capacité
complète d’introspection.

C’est sur ces bases que Yuval Kogman s’est appuyé pour
concevoir KiokuDB, un moteur de stockage de graphes

238

i

i

“perl” — 2010/9/30 — 13:10 — page 239 — #255
i

i

i

i

i

i

Se connecter à une base KiokuDB

d’objets. En effet, dans un application un tant soit peu
complexe, un objet est généralement relié à d’autres ob-
jets, ce qui forme un véritable graphe en mémoire. Sériali-
ser un objet nécessite donc souvent de pouvoir sérialiser le
graphe complet. KiokuDB propose un framework transpa-
rent pour stocker les objets Perl. Il est spécialement conçu
pour les objets s’appuyant sur Moose, mais supporte aussi
les objets natifs « simples ».

Se connecter à une base KiokuDB

connect()

Son utilisation est remarquablement simple. Première éta-
pe, se connecter. Sans surprise, KiokuDB permet d’utiliser
n’importe quelle base relationnelle classique au travers de
DBI, par exemple, une petite base SQLite :

my $db = KiokuDB -> connect (

" dbi : SQLite : dbname = app_objects . db " ,

create => 1,

) ;

et bien sûr, MySQL ou PostgreSQL :

my $db = KiokuDB -> connect (

" dbi : Pg : database = app_objects " ,

user => " app_user " ,

password => " sekr3t " ,

create => 1,

) ;

Mais KiokuDB propose aussi des systèmes de stockage dif-
férents comme BerkeleyDB ou de simples fichiers :

utilisation de BerkeleyDB

my $db = KiokuDB -> connect (

" bdb : dir =/ path / to / storage " ,

239

i

i

“perl” — 2010/9/30 — 13:10 — page 240 — #256
i

i

i

i

i

i

CHAPITRE 12 Abstraction du SQL, ORM et bases non-SQL

create => 1,

) ;

utilisation de fichiers

my $db = KiokuDB -> connect (

" files : dir =/ path / to / storage " ,

serializer => " yaml " , # Storable par déf .

create => 1,

) ;

Ou encore les bases non-SQL comme CouchDB, Mon-
goDB et Redis (voir page 243) :

my $db = KiokuDB -> connect (

" couchdb : uri = http ://127.0.0.1:5984/

➥database " ,

create => 1,

) ;

Il est aussi possible de fournir à connect() le chemin vers
un fichier de configuration en YAML.

Stocker et récupérer des objets

new_scope()

store()

Une fois connecté, le stockage d’un objet est aussi simple
que ces quelques lignes :

$db -> new_scope () ;

my $uuid = $db -> store ($obj) ;

La méthode new_scope() crée une nouvelle portée dans
laquelle réaliser les opérations sur un ensemble d’objets.
C’est un moyen simple proposé par KiokuDB pour masquer

240

i

i

“perl” — 2010/9/30 — 13:10 — page 241 — #257
i

i

i

i

i

i

Stocker et récupérer des objets

autant que possible le problème des références circulaires,
qui pourraient sinon conduire à une non-libération de la
mémoire. La méthode store() stocke l’objet et renvoie
un identifiant unique, par défaut un UUID. Il est aussi
possible de fournir directement l’identifiant :

$db -> store ($id => $obj);

Pour récupérer l’objet, il suffit donc de connaître son iden-
tifiant :

my $obj = $db -> lookup ($uuid);

Considérons un petit exemple. Voici une classe :

use MooseX :: Declare ;

class Node {

has x => (isa => " Num " , is => " rw " ,

➥ default => 0.0) ;

has y => (isa => " Num " , is => " rw " ,

➥ default => 0.0) ;

has name => (isa => " Str " , is => " rw " ,

➥ default => "") ;

has peer => (isa => " Node " , is => " rw " ,

➥ weak_ref => 1) ;

};

dont deux objets sont instanciés et liés entre eux, ce qui
crée un graphe (certes simple, mais un graphe tout de
même) :

my $node_A = Node -> new (name => "A " , x => 1,

➥y => 1) ;

my $node_B = Node -> new (name => "B " , x => 5,

➥y => 1) ;

$node_A -> peer ($node_B);

241

i

i

“perl” — 2010/9/30 — 13:10 — page 242 — #258
i

i

i

i

i

i

CHAPITRE 12 Abstraction du SQL, ORM et bases non-SQL

Leur stockage en base se fait naturellement :

$db -> new_scope () ;

$db -> store (node_A => $node_A , node_B =>

➥$node_B) ;

Le graphe comprenant ces deux objets est maintenant sto-
cké, avec leur relation. Si plus tard, l’un d’eux est récu-
péré :

$db -> new_scope () ;

my $node_A = $db -> lookup (" node_A ");

le graphe complet est chargé, afin que l’attribut peer de
cet objet ait bien quelque chose de correct au bout :

print Dumper ($node_A -> peer);

affiche :

$VAR1 = bless ({

’y ’ => 1,

’ name ’ => ’B ’,

’x ’ => 5

}, ’ Node ’);

Administrer une base KiokuDB
Chose bien utile, une interface en ligne de commande est
disponible via le module KiokuDB::Cmd qui installe la com-
mande kioku. Celle-ci permet d’effectuer des opérations
de maintenance sur une base KiokuDB, pour modifier des
entrées (en les présentant dans un format lisible comme
YAML ou JSON), vérifier et nettoyer les références in-
ternes.

242

i

i

“perl” — 2010/9/30 — 13:10 — page 243 — #259
i

i

i

i

i

i

Utiliser une base orientée paires de clé-valeur

Utiliser une base orientée paires
de clé-valeur

Dans la catégorie des bases non-SQL, on trouve notam-
ment Memcached, Tokyo Cabinet et Redis. Memcached
est en réalité un cache mémoire partagé, donc volatile,
mais très utile pour justement mettre en mémoire des
données temporaires. Tokyo Cabinet et Redis sont par
contre des bases persistantes, qui enregistrent les données.

Bases de données non-SQL

De nouveau types de bases de données sont apparus (ou ré-

apparus) durant ces dernières années, dont la principale ca-

ractéristique est de n’être pas relationnelles et orientées enre-

gistrements comme les bases SQL, mais plutôt orientées paires

(de clé-valeur) ou orientées documents, et d’offrir des API na-

tives plutôt qu’un langage de requête comme SQL. D’où leur

regroupement derrière le nom générique de bases non-SQL,

bien que cela soit un peu abusif puisque cela met sur le même

plan des bases aux caractéristiques très différentes.

Elles ont des API logiquement assez proches. Ainsi pour
Memcached :

use Cache :: Memcached ;

my $memd = Cache :: Memcached -> new (

servers => [" 10.0.0.25:11211 " , "

10.0.0.26:11211 "],

) ;

ajout de valeurs

$memd -> set (the_answer => 42) ;

243

i

i

“perl” — 2010/9/30 — 13:10 — page 244 — #260
i

i

i

i

i

i

CHAPITRE 12 Abstraction du SQL, ORM et bases non-SQL

marche aussi avec des structures

$memd -> set (result_set => { list => [...]

}) ;

récupération des valeurs

my $val = $memd -> get (" the_answer ");

my $set = $memd -> get (" result_set ");

Et avec Redis :

use Redis ;

my $redis = Redis -> new (server =>

➥" 10.0.0.25:6379 ");

ajout de valeurs

$redis -> set (the_answer => 42) ;

récupération de valeurs

my $val = $memd -> get (" the_answer ");

Le module Perl qui fournit le support Redis ne permet
pas encore de stocker directement des références, mais il
est toujours possible de les sérialiser manuellement.

Utiliser une base orientée
documents
La notion de document doit ici se comprendre dans un sens
assez générique. Il s’agit au final de structures stockées
en l’état. La base la plus connue dans cette catégorie est
CouchDB, qui utilise JSON (voir page 308) comme for-
mat. Plusieurs modules CPAN, aux API assez différentes,
sont disponibles pour accéder à CouchDB, tels que POE::-
Component::Client::CouchDB, CouchDB::Client ou encore
AnyEvent::CouchDB. Petit exemple avec ce dernier :

244

i

i

“perl” — 2010/9/30 — 13:10 — page 245 — #261
i

i

i

i

i

i

Utiliser une base orientée documents

use AnyEvent :: CouchDB ;

my $couch = couch (’ http :// localhost :5984/ ’);

my $db = $couch -> db (" app_objects ");

my $host = $db -> open_doc (" front01 . domain

➥. net ") - recv ;

$host - >{ os }{ arch } = " x86_64 ";

$db -> save_doc ($host) -> recv ;

L’un des intérêts de ces bases est de fournir un méca-
nisme pour stocker des objets sous une forme sérialisée et
portable (comme JSON), ce qui permet de les interroger
depuis n’importe quel langage de programmation, alors
que les bases d’objets natifs comme KiokuDB ne peuvent
bien évidemment fonctionner qu’avec des programmes
Perl. CouchDB en particulier, par son stockage JSON,
est même directement utilisable depuis du code JavaScript
exécuté au sein d’une page web.

245

i

i

“perl” — 2010/9/30 — 13:10 — page 246 — #262
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 247 — #263
i

i

i

i

i

i

13
Dates et heures

La gestion du temps en informatique est un problème
délicat car les concepts humains représentant le temps,
les dates et les durées sont multiples, complexes et chan-
geants. Pire encore, il s’agit d’un problème qui est même
souvent d’ordre politique, d’ampleur internationale.

Cette description peut paraître exagérée, mais hélas la ges-
tion correcte des dates et heures tient du casse-tête esché-
rien. Voici quelques petits exemples pour s’en convaincre.

Premièrement, le calcul d’une année bissextile : cela pa-
raît une opération assez simple à effectuer. Il s’agit d’une
année dont le millésime est divisible par 4, sauf celles di-
visibles par 100, mais en comprenant celles divisibles par
400. Ainsi, si 2000 et 2008 sont bissextiles, 1800, 1900 et
2010 ne le sont pas. (Et pour être complet, il faut signaler
qu’il existe encore un décalage de trois jours sur un cycle
de 10 000 ans à compenser.) Le calcul est a priori simple, et
pourtant les consoles PlayStation 3 ont été affectées par un
problème le 1er mars 2010 : celles-ci se croyaient dans une
année bissextile, et donc un 29 février. D’où le dysfonc-
tionnement de nombreux services. Le problème n’avait
pas été détecté auparavant car la PS3 ayant été commer-
cialisée en novembre 2006, 2010 était la première année
paire non bissextile pour laquelle elle devait faire ce calcul
(erroné. . .).

i

i

“perl” — 2010/9/30 — 13:10 — page 248 — #264
i

i

i

i

i

i

CHAPITRE 13 Dates et heures

Microsoft avait affronté un problème similaire le 31 dé-
cembre 2008, lorsque ses lecteurs multimédia portables
Zune (vendus seulement aux États-Unis) se sont tous blo-
qués, fuseau horaire après fuseau horaire, au fur et à me-
sure que ceux-ci passaient l’année. En effet, 2008 était
une année avec une seconde intercalaire, ajoutée à la fin
du 31 décembre, notée 23:59:60. Pas de chance pour Mi-
crosoft, le code de gestion des dates de Freescale ne gérait
pas cette seconde, d’où le blocage général.

Et à propos de fuseaux horaires, sur combien de fuseaux
s’étend la Russie ? Neuf depuis le 28 mars 2010, date à la-
quelle, sur décision du Président Dmitri Medvedev, deux
des onze fuseaux jusqu’alors utilisés ont été abandonnés
(UTC+4 et UTC+12).

Enfin, le passage de l’heure d’hiver à l’heure d’été ne s’ef-
fectue pas au même moment dans tous les pays. Pire, pour
certains États fédéraux comme les États-Unis d’Amérique,
la décision se prend au niveau local et non fédéral, d’où
certains États qui, bien que situés dans un même fuseau
horaire, ne sont pas à la même heure.

La base tz

Les États publient bien évidemment les informations liées par
exemple aux changements d’horaire, mais il n’existe pas d’or-
ganisme international qui regrouperait toutes ces données
pour les compiler. Fort heureusement, l’apparition des réseaux
informatiques a permis la mise en place d’une collaboration
internationale pour la constitution d’une base de données pré-
vue pour l’usage informatique, compilant justement les infor-
mations publiées par les États et organismes en charge de la
gestion du temps. Cette base est nommée base tz, pour time-

zone, ou encore base Olson, d’après Arthur David Olson qui a

248

i

i

“perl” — 2010/9/30 — 13:10 — page 249 — #265
i

i

i

i

i

i

Utiliser le module Date::Parse

initié le projet en 1986 et a publié dans le domaine public le
code source pour utiliser les données de cette base, aujourd’hui
principalement maintenue par Paul Eggert.

Un aspect important de la base Olson est qu’elle définit les
« zones de temps » (time zones) qui donnent leur nom à cette
base, mais qui sont très différentes des fuseaux horaires. En ef-
fet, ces zones sont définies comme des régions géographiques
où les horloges locales sont en accord depuis 1970, une zone
pouvant couvrir un État ou une partie d’un État. Il faut no-
ter que cette définition, contrairement à celle des fuseaux ho-
raires, n’est pas normative.

Ces zones sont nommées suivant le schéma aire/zone, par

exemple « Europe/Paris », ou « America/New_York », tous les

noms de lieux étant en anglais. L’aire est le nom d’un conti-

nent (Asia, Africa) ou d’un océan (Atlantic, Pacific). La plupart

des zones correspondent par construction à un pays, sauf pour

certains pays, en particulier les plus étendus (Russie, États-

Unis, Canada, Chine, Brésil) qui sont divisés en plusieurs zones.

Dans tous les cas, les zones ont pour nom celui de la ville la

plus peuplée ou la plus représentative de la région.

Utiliser le module Date::Parse

Une date peut être écrite sous des formats très divers :
ISO-8601 dans le meilleur des cas, ctime(3) qui se ren-
contre dans bien des fichiers de journalisation, timestamp
Unix dans certains cas, ou encore des formats personna-
lisés (comme celui d’Apache). Dans certains cas, il peut
manquer des informations. Un cas typique est celui des
journaux de serveurs de mails (Sendmail, Postfix) dans les-
quels l’année et le fuseau horaire sont souvent absents.

249

i

i

“perl” — 2010/9/30 — 13:10 — page 250 — #266
i

i

i

i

i

i

CHAPITRE 13 Dates et heures

Il est bien sûr possible de vouloir gérer cela « à la main »,
mais pourquoi se compliquer la vie et perdre du temps
à découvrir tous les problèmes qu’il faut résoudre quand
un module de la qualité de Date::Parse est disponible sur
CPAN ? Il est en effet capable d’analyser un grand nombre
de formats différents, et supporte même plusieurs langues.

Son interface est constituée des deux fonctions str2time()
et strptime() qui toutes deux acceptent une chaîne en
argument, ainsi qu’un nom de zone en second argument
optionnel.

Lire une date avec Date::Parse

str2time(..)

str2time() donne comme résultat le timestamp Unix cor-
respondant :

use Date :: Parse ;

format Apache

my $date = " 21/ Jun /2010:23:09:17 +0200 " ;

my $time = str2time ($date);

print $time ; # "1277154557"

Interpréter une date avec
Date::Parse

strptime(..)

strptime() renvoie une liste de valeurs correspondant aux
différentes composantes de la date :

250

i

i

“perl” — 2010/9/30 — 13:10 — page 251 — #267
i

i

i

i

i

i

Changer la langue avec Date::Language

use Date :: Parse ;

format Apache

my $date = " 21/ Jun /2010:23:09:17 +0200 " ;

my ($ss , $mm , $hh , $day , $month , $year ,

➥$zone) = strptime ($date);

$month += 1;

$year += 1900;

print " $day / $month / $year - $hh : $mm : $ss

➥($zone)" ;

affiche "21/6/2010 - 23:09:17 (7200) "

Info

Ici, $zone est le décalage en secondes de la zone par rapport à
GMT. Il faut noter que strptime() suit les mêmes conventions
que localtime() et les autres fonctions internes de gestion du
temps, et que le mois est donc de 0 à 11, et l’année est retranchée
de 1900. Il est donc nécessaire de corriger ces deux valeurs pour
toute utilisation où les intervalles normaux sont attendus, que ce
soit pour un affichage destiné à un humain ou comme argument
à un module comme DateTime.

Changer la langue avec
Date::Language

Date::Language->new("French”);

Par défaut, Date::Parse n’analyse que les dates en anglais,
mais supporte près d’une trentaine de langues différentes
par le biais du module Date::Language, qui propose une
API proche si ce n’est qu’il faut créer un objet correspon-
dant à la langue d’analyse :

251

i

i

“perl” — 2010/9/30 — 13:10 — page 252 — #268
i

i

i

i

i

i

CHAPITRE 13 Dates et heures

use Date :: Language ;

my $date = " 21 juin 2010 04:15:31 ";

création de l ’ objet Date :: Language

pour analyser en français

my $lang = Date :: Language -> new (" French ");

my $time = $lang -> str2time ($date) ;

print " $time ";

affiche "1277086531"

my ($ss , $mm , $hh , $day , $month , $year ,

➥$zone) = $lang -> strptime ($date);

$month += 1;

$year += 1900;

print " $day / $month / $year - $hh : $mm : $ss

➥($zone)" ;

affiche "21/6/2010 - 04:15:31 () "

La zone est ici logiquement vide puisque aucune n’était
précisée dans la date fournie. Il faut d’ailleurs noter que
strptime() ne fournit des valeurs que s’il a pu les déter-
miner, et renvoie un tableau vide en cas d’erreur.

Gérer les intervalles de temps
avec Time::Duration

Un autre besoin très courant est d’afficher sous forme
compréhensible le délai avant la fin d’une tâche, ou la du-
rée entre deux dates. Les conversions sont bien évidem-
ment simples à écrire, mais le module Time::Duration,
outre cette petite factorisation, apporte un plus non né-
gligeable sous la forme d’une approximation, d’une ré-
duction de l’information afin de la rendre plus lisible.

252

i

i

“perl” — 2010/9/30 — 13:10 — page 253 — #269
i

i

i

i

i

i

Interpréter une durée avec Time::Duration

Interpréter une durée avec
Time::Duration

duration(..)

La fonction de base du module Time::Duration est dura-
tion(), qui traduit une durée compréhensible par un être
humain :

print duration (3820) ;

affiche "1 hour and 4 minutes "

Astuce

Ce n’est pas immédiatement visible, mais la fonction a ici arrondi
le résultat. La valeur exacte peut être obtenue ainsi :

print duration_exact (3820) ;

affiche "1 hour , 3 minutes ,

➥and 40 seconds "

Par défaut, duration() réduit le nombre d’unités à affi-
cher à deux, car un être humain s’inquiète par exemple
rarement d’avoir d’une précision de l’ordre de la seconde
si l’attente affichée est de l’ordre de l’heure. Le nombre
d’unités affichées peut bien sûr se contrôler par un second
argument :

print duration (38487592 , 3) ;

affiche "1 year , 80 days , and 11 hours "

ce qui reste plus lisible que la valeur

exacte "1 year , 80 days , 10 hours ,

59 minutes , and 52 seconds "

253

i

i

“perl” — 2010/9/30 — 13:10 — page 254 — #270
i

i

i

i

i

i

CHAPITRE 13 Dates et heures

Obtenir la durée à partir de
maintenant

ago(..) later(..)

Time::Duration propose une série de fonctions qui per-
mettent d’en exprimer un peu plus :

print ago (120) ; # "2 minutes ago "

print later (3750 , 1) ; # "1 hour later "

Astuce

L’exemple précédent n’est certes pas transcendant, mais ces fonc-
tions ont l’avantage d’être un peu plus malignes :

print ago (0) ; # " right now "

print ago (-130) ;

"2 minutes and 10 seconds from now "

print later (0) ; # " right then "

print later (-2460) ; # "41 minutes earlier "

Ainsi, quand ago() reçoit une valeur négative, elle est passée à
from_now(), et inversement ; de même pour les fonctions la-

ter() et earlier().

Réduire l’affichage

concise(..)

Une fonction de Time::Duration, concise(), permet de
réduire les chaînes produites par les autres fonctions :

254

i

i

“perl” — 2010/9/30 — 13:10 — page 255 — #271
i

i

i

i

i

i

Changer la langue avec Time::Duration::fr

print ago (5938) ;

affiche "1 hour and 39 minutes ago "

print concise (duration (5938));

"1 h39m ago "

Changer la langue avec
Time::Duration::fr

use Time::Duration::fr

L’auteur de Time::Duration a pensé à l’internationalisa-
tion, et a rendu possible l’écriture de sous-classes permet-
tant la localisation. Comme il n’existait pas de version
française, l’un des auteurs de ce livre s’en est chargé, ce
qui ne lui a demandé que quelques heures durant un long
voyage en train. . . Le module Time::Duration::fr est dis-
ponible sur CPAN :

use Time :: Duration :: fr ;

print duration (243550 , 3) ;

"2 jours , 19 heures , et 39 minutes "

print ago (243550) ;

" il y a 2 jours et 20 heures "

print earlier (243550 , 1) ;

"3 jours plus tôt "

Info

Voici quelques exemples plus concrets :

my $file = " data - dumper - ex2 ";

my $age = $^ T - (stat ($file)) [9];

print " Le fichier a été changé " ,

➥ago ($age) , $ /;

255

i

i

“perl” — 2010/9/30 — 13:10 — page 256 — #272
i

i

i

i

i

i

CHAPITRE 13 Dates et heures

" Le fichier a été changé il y a 3 jours

et 47 minutes "

print " Expiration : " , from_now (7390) , $ /;

" Expiration : dans 2 heures et 3 minutes "

print " Cette action sera exécutée " ,

later (245) , " que la précédente . ";

" Cette action sera exécutée 4 minutes et

5 secondes plus tard que la précédente ."

Utiliser les modules DateTime
DateTime::Duration

DateTime::Format

La gestion des dates, heures, durées et autres questions
liées est complexe. DateTime est un ensemble de modules
CPAN stables et matures qui allient facilité d’utilisation
pour les cas simples et fonctionnalités puissantes pour ré-
soudre les problèmes complexes :

● DateTime : le module principal est DateTime, qui permet
de créer des objets correspondant à des moments précis
dans le temps.

● DateTime::Duration : il permet de représenter une du-
rée, un intervalle entre deux dates.

● DateTime::Format : accompagné de ses modules déri-
vés, ils permettent de transformer des données (géné-
ralement du texte) en dates, et surtout de produire des
représentations (souvent textuelles) de dates et durées.

● DateTime::Event : les modules DateTime::Event::* con-
tiennent des listes d’événements connus, pouvant être
utilisés facilement.

256

i

i

“perl” — 2010/9/30 — 13:10 — page 257 — #273
i

i

i

i

i

i

Construire une instance DateTime arbitraire

Construire une instance DateTime
arbitraire

DateTime->new(. . .)

DateTime propose principalement deux constructeurs pour
représenter un moment dans le temps : new() et now().

use DateTime ;

my $christmas = DateTime -> new (year => 2010 ,

month => 12 ,

day => 25 ,

) ;

La variable $christmas est maintenant un objet DateTime,
qui représente le 25 décembre 2010. On peut s’en persua-
der en l’affichant :

print $christmas ;

affiche 2010 -12 -25 T00 :00:00

Le seul argument obligatoire à new() est year, les autres
prendront des valeurs par défaut.

Il est possible d’être plus précis et de rajouter des para-
mètres à new() :

use DateTime ;

my $christmas = DateTime -> new (

year => 2010 ,

month => 12 ,

day => 25 ,

hour => 14 ,

minute => 12 ,

second => 42 ,

nanosecond => 600000000 ,

);

257

i

i

“perl” — 2010/9/30 — 13:10 — page 258 — #274
i

i

i

i

i

i

CHAPITRE 13 Dates et heures

Ici, plus d’arguments ont été passés, permettant d’indiquer
presque parfaitement un moment précis dans le temps. Il
manque cependant une notion, celle du fuseau horaire.

Choisir un fuseau horaire
time_zone => ’Europe/Paris’

Par défaut, lorsque le fuseau horaire n’est pas précisé, Da-
teTime utilise un fuseau horaire spécial, dit « flottant » :
lors des calculs et manipulations de temps, les changement
de fuseau horaire ne seront pas pris en compte. Pour des
situations simples, c’est suffisant, mais il est également pos-
sible de spécifier le fuseau horaire lors de la création d’un
objet DateTime :

use DateTime ;

my $christmas_in_london = DateTime -> new (

year => 2010 ,

month => 12 ,

day => 25 ,

time_zone => ’ Europe / London ’

) ;

my $christmas_in_paris = DateTime -> new (

year => 2010 ,

month => 12 ,

day => 25 ,

time_zone => ’ Europe / Paris ’

) ;

Obtenir l’instant présent
DateTime->now()

258

i

i

“perl” — 2010/9/30 — 13:10 — page 259 — #275
i

i

i

i

i

i

Obtenir l’année

Il est facile de créer un objet DateTime correspondant à
l’instant présent, en utilisant le constructeur now(), qui
comme new() peut prendre comme paramètre time_zone.

use DateTime ;

my $now = DateTime -> now () ;

sleep 5;

my $five_seconds_later = DateTime -> now () ;

Obtenir la date du jour

DateTime->today()

Il existe également un raccourci pour obtenir un objet
date du jour, en utilisant today().

use DateTime ;

my $today = DateTime -> today () ;

Obtenir l’année
$dt->year()

$dt->set_year(..)

Retourne l’année de l’objet. $dt->set_year() permet de
mettre à jour la valeur.

Info

Les objets DateTime ont beaucoup de méthodes pour récupérer
et modifier leur attributs. Il est inutile de les détailler toutes ici,
seules les plus importantes sont présentées.

259

i

i

“perl” — 2010/9/30 — 13:10 — page 260 — #276
i

i

i

i

i

i

CHAPITRE 13 Dates et heures

Obtenir le mois
$dt->month()

$dt->set_month(..)

Retourne le mois comme entier de 1 à 12. $dt->set_month()
permet de mettre à jour la valeur.

Obtenir le nom du mois
$dt->month_name()

Retourne le nom du mois, conformément à la locale.

Obtenir le jour du mois

$dt->day_of_month()

Retourne le jour du mois, de 1 à 31. $dt->set_day() per-
met de mettre à jour la valeur.

Obtenir le jour de la semaine

$dt->day_of_week()

Retourne le jour de la semaine, de 1 à 7.

260

i

i

“perl” — 2010/9/30 — 13:10 — page 261 — #277
i

i

i

i

i

i

Obtenir les secondes

Obtenir le nom du jour

$dt->day_name()

Retourne le nom du jour de la semaine, conformément à
la locale.

Obtenir l’heure
$dt->hour()

$dt->set_hour()

Retourne l’heure, de 0 à 23. $dt->set_hour() permet de
mettre à jour la valeur.

Obtenir les minutes
$dt->minute()

$dt->set_minute()

Retourne les minutes, de 0 à 59. $dt->set_minute() per-
met de mettre à jour la valeur.

Obtenir les secondes
$dt->second()

$dt->set_second()

261

i

i

“perl” — 2010/9/30 — 13:10 — page 262 — #278
i

i

i

i

i

i

CHAPITRE 13 Dates et heures

Retourne les secondes, de 0 à 61. Les valeurs 60 et 61 sont
utilisées pour les secondes intercalaires. $dt->set_second()
permet de mettre à jour la valeur.

Les secondes intercalaires

Les secondes intercalaires sont des secondes. Selon Wikipedia,
une seconde intercalaire, également appelée saut de seconde

ou seconde additionnelle, est un ajustement d’une seconde du

Temps universel coordonné (UTC). Et ce, afin qu’il reste assez

proche du Temps universel (UT) défini quant à lui par l’orienta-

tion de la Terre par rapport aux étoiles.

Il s’agit d’un système, qui date de 1972, et qui met en place
des moments où une seconde est retranchée ou ajoutée. Cela
permet de garder le Temps universel coordonné à moins de
0,9 seconde du Temps universel (UT). Les besoin d’ajout ou de
retranchement de ces secondes intercalaires ne peuvent pas
être prévus, le mouvement de la Terre n’étant pas prévisible
avec une très grande précision.

C’est pourquoi il est possible d’avoir une date avec un nombre

de secondes supérieur à 59, jusqu’à 61.

Obtenir les nanosecondes
$dt->nanosecond()

$dt->set_nanosecond()

Retourne les nanosecondes. Par exemple, 500 000 000 est
une demi-seconde. $dt->set_nanosecond() permet de met-
tre à jour la valeur.

262

i

i

“perl” — 2010/9/30 — 13:10 — page 263 — #279
i

i

i

i

i

i

Obtenir des durées de temps

Obtenir des durées de temps

DateTime::Duration->new()

Un objet de type DateTime représente un instant donné.
Pour pouvoir manipuler des temps et dates plus facile-
ment, il est très utile de disposer du concept de durée.
La classe DateTime::Duration implémente ce concept. Les
objets qui en sont instanciées représentent des durées ar-
bitraires, qui peuvent être modifiées et utilisées pour mo-
difier ou créer de nouvelles dates.

Un objet DateTime::Duration peut s’obtenir à partir de
rien, en utilisant son constructeur new() :

my $duration = DateTime :: Duration -> new (

➥years => 1,

➥months => 6,

) ;

$duration représente un an et 6 mois

Les paramètres du constructeur sont donnés dans le ta-
bleau suivant.

Tableau 13.1: Constructeur de DateTime::Duration

Paramètre Description

years le nombre d’années

months le nombre de mois

weeks le nombre de semaines

days le nombre de semaines

hours le nombre d’heures

minutes le nombre de minutes

seconds le nombre de secondes

nanoseconds le nombre de nanosecondes

263

i

i

“perl” — 2010/9/30 — 13:10 — page 264 — #280
i

i

i

i

i

i

CHAPITRE 13 Dates et heures

Astuce

Il est également possible de créer une durée directement à partir
de deux dates :

my $dt1 = DateTime -> new (year => 2011 ,

month => 12 ,

day => 25 ,

) ;

my $dt2 = DateTime -> new (year => 2010 ,

month => 12 ,

day => 25 ,

) ;

my $duration = $dt1 -> subtract_datetime ($dt2)

;

$duration représente la durée entre

les deux dates , donc un an .

Décaler une date dans le futur
$dt->add(..)

La méthode add() permet de décaler un objet DateTime

dans le futur.

date représentant Noël 2010

my $dt = DateTime -> new (year => 2010 ,

month => 12 ,

day => 25 ,

);

$dt -> add (year => 1) ;

$dt représente maintenant Noël 2011

$dt -> add (days => 1) ;

$dt représente maintenant

le 26 décembre 2011

264

i

i

“perl” — 2010/9/30 — 13:10 — page 265 — #281
i

i

i

i

i

i

Décaler une date dans le passé

Les paramètres sont les mêmes que ceux du construc-
teur de la classe DateTime::Duration : donc years, months,
weeks, days, hours, minutes, seconds, nanoseconds.

Ajouter une durée

$dt->add_duration(..)

Cette méthode est similaire à add(), cependant elle prend
en argument une durée, c’est-à-dire un objet DateTime::-
Duration.

use DateTime ;

use DateTime :: Duration ;

my $duration = DateTime :: Duration -> new (

➥days => 15);

my $dt = DateTime -> now () ;

$dt -> add_duration ($duration);

$dt est maintenant 15 jours

dans le futur

Attention

Il ne faut pas utiliser add() ou add_duration()avec des valeurs
négatives pour décaler un objet DateTime dans le passé. Pour
cela, utiliser la méthode subtract().

Décaler une date dans le passé

$dt->subtract(..)

La méthode subtract() permet de décaler un objet Date-
Time dans le passé.

265

i

i

“perl” — 2010/9/30 — 13:10 — page 266 — #282
i

i

i

i

i

i

CHAPITRE 13 Dates et heures

date représentant noël 2010

my $dt = DateTime -> new (year => 2010 ,

month => 12 ,

day => 25 ,

);

$dt -> subtract (year => 1);

$dt représente maintenant noël 2009

$dt -> subtract (days => 1);

$dt représente maintenant

le 24 décembre 2009

Cette méthode est très similaire à add(), et accepte les
même paramètres. La différence est que les valeurs sont
retranchées, et non ajoutées.

Soustraire une durée
$dt->subtract_duration(..)

Cette méthode est similaire à subtract(), cependant elle
prend en paramètre une durée, c’est-à-dire un objet
DateTime::Duration.

use DateTime ;

use DateTime :: Duration ;

my $duration = DateTime :: Duration -> new (

➥ days => 15);

my $dt = DateTime -> now () ;

$dt -> subtract_duration ($duration) ;

$dt est maintenant 15 jours dans le passé

266

i

i

“perl” — 2010/9/30 — 13:10 — page 267 — #283
i

i

i

i

i

i

Calculer un intervalle de temps

Calculer un intervalle de temps

$dt->subtract_datetime(..)

delta_md()

delta_days()

delta_ms()

Cette méthode permet de calculer l’intervalle de temps
entre deux objets DateTime. Elle retourne un objet
DateTime::Duration, relativement à l’objet sur lequel elle
est appliquée :

date représentant noël 2010

my $dt_10 = DateTime -> new (year => 2010 ,

month => 12 ,

day => 25 ,

);

date représentant noël 2009

my $dt_09 = DateTime -> new (year => 2009 ,

month => 12 ,

day => 25 ,

);

my $duration = $dt_10 -> subtract_datetime (

➥ $dt_09);

$duration représente 1 an

Autre possibilité, les méthodes delta_*. delta_md renvoie
une DateTime::Duration qui représente une portion de la
différence entre deux objets DateTime.

$dt -> delta_md ($datetime) ;

$dt -> delta_days ($datetime);

$dt -> delta_ms ($datetime) ;

● delta_md() : cette méthode renvoie une durée expri-
mée en mois et en jours.

267

i

i

“perl” — 2010/9/30 — 13:10 — page 268 — #284
i

i

i

i

i

i

CHAPITRE 13 Dates et heures

● delta_days() : cette méthode renvoie une durée ex-
primée uniquement en jours.

● delta_ms() : cette méthode renvoie une durée expri-
mée uniquement en minutes et secondes.

Attention

Ces méthodes renvoient toujours une durée positive ou nulle.

Les modules formateurs

Il existe beaucoup de modules dérivés de DateTime::Format.
Ils sont désignés sous le terme DateTime::Format::*.

Par abus de langage, un « formateur » (ou formatter en an-
glais) désigne un de ces modules (par exemple DateTime::-

Format::Pg), ou bien une instance de ce module.

Un formateur est un module qui va permettre tout d’abord

d’interpréter une chaîne de texte, et de construire un objet

DateTime, et également d’utiliser un objet DateTime pour en

générer une représentation textuelle.

Générer une représentation
textuelle d’une date

format_datetime(..)

Tous les formateurs ont un point commun : ils implé-
mentent une méthode format_datetime, qui permet de
générer la représentation texte d’un objet DateTime. Il suf-
fit de l’utiliser et d’afficher la chaîne de caractères :

268

i

i

“perl” — 2010/9/30 — 13:10 — page 269 — #285
i

i

i

i

i

i

Générer une représentation textuelle d’une date

use DateTime ;

use DateTime :: Format :: Human ;

my $formatter = DateTime :: Format :: Human ->

➥new () ;

my $spoken_time = $formatter ->

➥format_datetime (

DateTime -> now ()

);

say " The time is now $spoken_time ";

Cet exemple affichera sur la console :

The time is now a little after quarter past eight

in the evening

Astuce

Il est possible d’attacher directement un formateur à un objet
DateTime. Ainsi, dès que l’objet en question est utilisé dans un
contexte de chaîne1 , le formateur sera utilisé de manière trans-
parente. Un exemple est plus parlant :

use DateTime ;

use DateTime :: Format :: Strptime

my $formatter = DateTime :: Format :: Strptime ->

➥new (

pattern => ’% T ’

);

my $now = DateTime -> now (formatter =>

➥$formatter);

say " Il est maintenant : $now " ;

Ce code affichera quelque chose comme :

Il est maintenant : 18:15:35

1. Voir le contexte de chaîne au Chapitre Éléments du langage page 22.

269

i

i

“perl” — 2010/9/30 — 13:10 — page 270 — #286
i

i

i

i

i

i

CHAPITRE 13 Dates et heures

La majorité des formateurs prennent des arguments, qui
permettent de paramétrer le comportement de la repré-
sentation texte générée : n’afficher qu’une partie de l’in-
formation (par exemple juste les heures), spécifier le lan-
gage, l’ordre des informations, etc.

Interpréter une date

parse_datetime(..)

La plupart des formateurs permettent d’interpréter une
chaîne de caractères, et de renvoyer un objet DateTime

correspondant. Pour cela, il faut généralement leur don-
ner quelques arguments pour les aider à reconnaître la date
correctement. Voici un exemple simple avec DateTime::-

Format::Strptime :

use DateTime :: Format :: Strptime ;

my $formatter = new DateTime :: Format ::

Strptime (

pattern => ’% T ’,

locale => ’ en_FR ’,

time_zone => ’ Europe / Paris ’,

) ;

my $dt = $formatter -> parse_datetime (

➥’ 22:14:37 ’) ;

Attention

Certains formateurs n’implémentent pas l’interprétation de dates,
mais juste la génération de texte. Il faut se référer à leur docu-
mentation (par exemple sur CPAN) pour vérifier leur fonctionna-
lités.

270

i

i

“perl” — 2010/9/30 — 13:10 — page 271 — #287
i

i

i

i

i

i

Interpréter une date

Il serait bien trop long d’examiner ici les quatre-vingts
modules de formatage DateTime::Format::*. Voici une
liste des modules les plus intéressants et utiles, à consul-
ter sur CPAN :

● DateTime::Format::Natural : probablement le plus po-
lyvalent et utile, il permet d’interpréter et générer des
dates qui ont un format courant, que l’on retrouve dans
les écrits. Ce module est paramétrable très finement,
pour s’adapter à presque toutes les manières qu’ont les
hommes d’écrire une date.

● DateTime::Format::Strptime : comme vu précédemment,
permet de manipuler les représentations de dates aux
formats strp et strf, très utilisés en informatique.

● DateTime::Format::DBI : permet de travailler avec les
représentations de date dans les bases de données. Voir
aussi Oracle, DateTime::Format::SQLite, DateTime::For-
mat::Oracle, etc.

● DateTime::Format::Human : comme vu précédemment,
permet de générer la date dans un format intelligible
pour un humain. DateTime::Format::Human::Duration

permet de générer et interpréter des durées.

● DateTime::Format::Builder : permet de créer ses propres
formateurs spécifiques, à partir de différentes règles.

271

i

i

“perl” — 2010/9/30 — 13:10 — page 272 — #288
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 273 — #289
i

i

i

i

i

i

Partie
IV

–
Form

ats
structurés

14
XML

Cette partie est consacrée à la manipulation des formats
structurés, c’est-à-dire des données qui suivent une struc-
ture plus ou moins bien définie. Étant pour la plupart en
format texte, donc faciles à lire, ils semblent simples à gé-
rer par programmation. Mais cette apparente simplicité est
souvent trompeuse en raison d’une part de la complexité
intrinsèque des formats, et d’autre part de la grande varia-
bilité de conformité des données que le développeur, ou
son programme, est amené à rencontrer dans la vie réelle.
Même s’il semble souvent plus rapide, ou facile, de sortir
l’arme des expressions régulières pour analyser le format,
cela s’avère dans quasiment tous les cas une mauvaise idée.

La bonne manière de faire est d’utiliser le ou les modules
appropriés1, auxquels il faut déléguer le rôle de correcte-
ment lire et écrire les données en respectant leur gram-
maire. L’abstraction que ces modules apportent permet
aussi, bien souvent, de simplifier le code en aval, sans par-
ler du fait que ceux qui seront présentés ici sont inten-
sivement testés et utilisés depuis des années par un grand
nombre de personnes.

1. Ce rappel peut sembler superflu, mais les auteurs ont déjà croisé plus
d’un analyseur HTML en expressions régulières, et voudraient ne pas en
voir davantage dans la nature. . .

i

i

“perl” — 2010/9/30 — 13:10 — page 274 — #290
i

i

i

i

i

i

CHAPITRE 14 XML

Est-il encore besoin de présenter XML ? Rappelons que
plus qu’un simple format, il s’agit d’une grammaire qui
permet de définir des formats, appelés applications en ter-
minologie XML. XHTML (la reformulation de HTML
conforme XML), SOAP, RSS ou encore OpenDocument
(le format des fichiers OpenOffice.org) sont des applica-
tions XML, mais qui correspondent clairement à des for-
mats bien différents.

Perl dispose de très nombreux modules liés au traitement
du XML. Trop nombreux même, mais c’est le cas dans
tous les langages qui ont des bibliothèques pour manipu-
ler le XML depuis la première publication de cette norme
en 1998. Modules d’analyse, de génération, d’API stan-
dard ou non d’accès au document (DOM, SAX, XPath),
ou de transformation (XSLT), Perl dispose de modules
pour à peu près tous les cas et avec la plupart, si ce n’est
toutes, les bibliothèques externes qui forment les standards
actuels. Nous n’allons vraiment examiner que deux mo-
dules, car ils suffisent à combler la majeure partie des be-
soins courants.

DOM et SAX

Petit rappel pour ceux qui ne connaîtraient pas certains des
nombreux noms bizarres dont regorgent les spécifications
XML. DOM (Document Object Model) est un modèle où le do-
cument XML est présenté sous la forme d’un arbre fini, mani-
pulable au travers de fonctions normalisées. DOM est un stan-
dard édicté par le W3C, afin de définir une API universelle, où
les fonctions ont les mêmes noms et mêmes arguments quel
que soit le langage de programmation.

L’ensemble de la structure du document étant en mémoire, il
est très facile de parcourir les branches de l’arbre, récupérer

274

i

i

“perl” — 2010/9/30 — 13:10 — page 275 — #291
i

i

i

i

i

i

Charger un document XML avec XML::LibXML

et modifier des informations, et même changer la structure du
document en ajoutant ou supprimant des branches.

Ce modèle est pratique pour les documents de faible taille,
mais sa consommation mémoire le rend rapidement inutili-
sable pour les documents de taille plus importante. La limite
exacte dépend de la consommation mémoire admise, mais au
delà de la centaine de méga-octets, c’est généralement un
gaspillage de ressources.

SAX (Simple API for XML) fonctionne au contraire sur un mo-
dèle événementiel, invoquant des méthodes définies par le
programmeur au fur et à mesure de l’analyse. Seul le nœud
courant est visible, et il n’est pas possible d’accéder à une autre
partie du document.

Très rapide d’exécution, cette méthode consomme aussi peu de
ressources puisque seule une petite partie du contenu XML est
chargée en mémoire à chaque instant. C’est donc une tech-
nique conçue pour le traitement des documents de grande
taille, qui ne peuvent tenir en mémoire. Elle est aussi adap-
tée au traitement des flux XML continus.

Son inconvénient est logiquement l’absence de contexte, qui

impose au programme de reconstituer celui dont il a besoin en

stockant en parallèle les informations nécessaires.

Charger un document XML
avec XML::LibXML

Derrière un nom assez peu parlant se cache le couteau
suisse du XML en Perl, car XML::LibXML est le binding de
la libxml2, la bibliothèque maintenue par la Fondation
Gnome et le W3C. Il propose, outre l’analyse de XML

275

i

i

“perl” — 2010/9/30 — 13:10 — page 276 — #292
i

i

i

i

i

i

CHAPITRE 14 XML

avec support des espaces de noms, la validation contre
des DTD, l’analyse de document HTML/4, le support
de XPath, XPointer, XInclude et offre les API DOM et
SAX.

Malgré toutes ces fonctionnalités supportées, le module
reste tout de même simple à utiliser :

use XML :: LibXML ;

my $parser = XML :: LibXML -> new ;

my $xmldoc = $parser -> parse_file ($path) ;

Ces quelques lignes suffisent pour analyser un document
XML dont on a donné le chemin ($path) et obtenir l’arbre
DOM correspondant dans $xmldoc. L’analyseur accepte
bien sûr de nombreuses options, par exemple pour la ges-
tion des erreurs voire l’activation de la validation du do-
cument, l’expansion des entités et DTD, le support XIn-
clude, etc.

XML::LibXML accepte comme source le chemin d’un fichier
(parse_file()), un descripteur de fichier (parse_fh()) ou
encore une chaîne de caractères (parse_string()).

L’analyse d’une page web n’est guère plus complexe :

use LWP :: Simple ;

use XML :: LibXML ;

my $parser = XML :: LibXML -> new ;

my $html = get (" http :// mongueurs . net /") ;

my $htmldoc = $parser -> parse_html_string (

➥$html) ;

À noter que XML::LibXML est bien moins permissif que
HTML::Parser sur les documents HTML qu’il accepte de
considérer comme valides, mais il peut s’avérer utile sur
des documents de type XHTML.

276

i

i

“perl” — 2010/9/30 — 13:10 — page 277 — #293
i

i

i

i

i

i

Parcourir un arbre DOM

Il faut remarquer que XML::LibXML propose depuis peu une
nouvelle API, un peu plus souple, sous la forme des mé-
thodes load_xml() et load_html() qui permettent de spé-
cifier la source de données sous la forme d’une option,
location pour lire depuis un fichier local ou depuis une
URL :

my $xmldoc = $parser -> load_xml (location =>

➥$location);

string pour lire depuis une chaîne :

my $xmldoc = $parser -> load_xml (string =>

➥$xml_content);

ou encore IO pour lire depuis un descripteur de fichier :

my $xmldoc = $parser -> load_xml (IO => $fh);

Ces méthodes peuvent même être invoquées sous forme
de méthodes de classe, le module se chargeant de créer
l’analyseur, avec les options par défaut.

Dans tous les cas, l’objet renvoyé représente l’arbre DOM
du document XML fourni en entrée.

Parcourir un arbre DOM
Pour regarder cela plus en détail, prenons le fichier XML
suivant comme exemple, qui décrit des informations sur
une machine :

<?xml version="1.0"?>

<host>

<name>www01.dcf.domain.net</name>

<network>

<interface name="eth0">

<address type="ipv4" prefix="24">10.0.0.132</address>

<address type="ipv6" prefix="64"

>2a01:e35:2f26:dde0:213:51af:fe7c:b4d8</address>

277

i

i

“perl” — 2010/9/30 — 13:10 — page 278 — #294
i

i

i

i

i

i

CHAPITRE 14 XML

</interface>

</network>

<os>

<type>Mac OS X</type>

<version>10.6.4</version>

<kernel>Darwin Kernel Version 10.4.0: Fri Apr 23 18:28:53

PDT 2010; root:xnu-1504.7.4~1/RELEASE_I386</kernel>

<arch>i486</arch>

</os>

<uptime>5895074.06</uptime>

<!-- ... -->

</host>

Le constructeur fournit un objet représentant l’arbre DOM :

my $dom = $parser -> parse_file (

➥" www01 . dcf . domain . net . xml ");

Une première manière de parcourir cet arbre est d’utiliser
l’API DOM :

my $root = $dom -> documentElement () ;

my ($node) = $root -> getChildrenByTagName (

➥" name ");

print $node -> nodeName () , " = " ,

➥$node -> textContent () , " \n" ;

Même si les noms des méthodes sont très explicites, ce
premier bout de code montre tout ce qu’il faut écrire pour
simplement accéder au premier fils du nœud racine. Pour
afficher l’adresse IPv4 de l’interface réseau, en parcourant
scrupuleusement l’arbre, il faut dérouler encore plus de
code :

my ($network) =

➥$root -> getChildrenByTagName (" network ") ;

my ($interface) =

➥$network -> getChildrenByTagName ("

interface ");

my (@nodes) =

278

i

i

“perl” — 2010/9/30 — 13:10 — page 279 — #295
i

i

i

i

i

i

Parcourir un arbre DOM

➥$interface -> getChildrenByTagName ("

address ") ;

for my $node (@nodes) {

next unless $node -> nodeType ==

➥XML_ELEMENT_NODE ;

if ($node -> getAttribute (" type ") eq " ipv4 ")

{ print $node -> textContent , "\ n" ;}

}

En réalité, il y a moyen de raccourcir un peu et d’aller
directement aux nœuds address :

my @nodes = $root -> getElementsByTagName (

➥" address ");

for my $node (@nodes) {

if ($node -> getAttribute (" type ") eq " ipv4 ")

{ print $node -> textContent , "\ n" ;}

}

mais cela ne fonctionne bien que si le document a des
éléments dont les noms sont tous non ambigus, mais en
général alors peu digestes comme netInterfaceAddress.
Si le nom est trop générique, comme type ou name, get-
ElementsByTagName() est inutilisable.

Cet exemple est un peu injuste car, en ne montrant que la
lecture de valeurs, il met en exergue la lourdeur de cette
API, qui n’est pas à imputer à XML::LibXML, mais bien au
standard DOM Level 3 qu’il respecte scrupuleusement.
Mais pour être honnête, il faut signaler qu’elle est ex-
trêmement complète, et permet de construire un arbre à
partir de zéro, d’ajouter de nouveaux nœuds, qui peuvent
recevoir attributs, textes et nœuds fils.

Toutefois, il faut bien reconnaître que pour le cas somme
toute très courant de la simple exploitation d’un docu-
ment, DOM n’est pas ce qu’il y a de plus simple. C’est là

279

i

i

“perl” — 2010/9/30 — 13:10 — page 280 — #296
i

i

i

i

i

i

CHAPITRE 14 XML

où XML::LibXML apporte ce qui fait son plus par rapport à
bien d’autres modules XML, le support de XPath.

Utiliser XPath

XPath est aussi une norme édictée par le W3C, qui per-
met de naviguer et d’effectuer des recherches au sein d’un
arbre DOM au moyen d’un chemin inspiré, dans sa forme
la plus simple, de la syntaxe des chemins Unix : les noms
sont séparés par des slashs, ’.’ représente le nœud courant
et ’..’ le nœud parent.

Ainsi, dans le document précédent, l’élément qui contient
le nom de la machine est accessible par le chemin /host/-

name, et le type de son système d’exploitation par /host/os/-
type. Pour les attributs, il suffit de précéder leur nom
d’une arobase : /host/network/interface/@name.

Avec un sous-chemin suffisamment non ambigu, un che-
min flottant peut être utilisé à la place d’un chemin absolu,
avec un double slash : //os/version.

Quand plusieurs éléments peuvent correspondre, il est pos-
sible de filtrer avec un sélecteur, noté entre crochets.
Le sélecteur le plus simple est le numéro du nœud, comme
dans un tableau, sauf que la numérotation commence à 1 :
//interface/address[1]/@type. La sélection peut d’ailleurs
aussi s’effectuer sur la valeur d’un attribut //interface/ad-
dress[@type="ipv6”], ou encore sur la partie texte de l’élé-
ment //os/kernel[contains(., “Kernel”)].

Ce dernier exemple montre que XPath propose une petite
bibliothèque de fonctions permettant de réaliser des opé-
rations simples sur les nœuds (last(), position(), count(),
id(). . .), ainsi que des opérations numériques (sum(),
round(). . .), booléennes (not(). . .) et sur les chaînes (con-
cat(), contains(), substring(), translate(). . .).

280

i

i

“perl” — 2010/9/30 — 13:10 — page 281 — #297
i

i

i

i

i

i

Utiliser SAX

Avec XML::LibXML et XPath, rechercher un nœud devient
bien plus simple :

my ($addr_node) = $dom -> findnodes (

➥’ // interface / address [@type =" ipv4 "] ’);

findnodes() renvoyant des nœuds, l’API DOM reste par-
faitement utilisable à ce niveau :

print $addr_node -> textContent () , "\n ";

La différence étant qu’il faut bien moins de code et qu’il
est plus facile de relire une recherche réalisée en XPath
qu’en pur DOM. Il est même possible d’accéder directe-
ment à la valeur :

my $ipv4 = $dom -> findvalue (’ // interface /

➥address [@type =" ipv4 "] ’) ;

Quand la structure du document est bien connue et que le
chemin est bien construit, cela permet de réduire le code
au strict minimum.

Utiliser SAX
XML::LibXML supporte SAX1 et SAX2, dans les portages
définis par XML::SAX, qui définit le standard en la matière
dans le monde Perl. La documentation reconnaît que ce
support n’est pas aussi avancé et complet que pour DOM.
C’est peut-être en partie dû au fait que, SAX étant né
dans le monde Java, il est très orienté objet et nécessite de
créer une classe respectant une interface particulière pour
réaliser le traitement du document. Si cette manière de
faire est assez coutumière avec un langage comme Java,
elle l’est beaucoup moins en Perl, où l’habitude est plutôt
de spécifier les callbacks par référence de fonction.

281

i

i

“perl” — 2010/9/30 — 13:10 — page 282 — #298
i

i

i

i

i

i

CHAPITRE 14 XML

La création d’une classe de traitement SAX reste tout de
même une tâche assez simple, puisqu’il suffit d’hériter de
XML::SAX::Base et de ne définir que les méthodes qui se-
ront utiles au traitement :

package MySAXHandler ;

use strict ;

use parent " XML :: SAX :: Base " ;

sub start_element {

my ($self , $elt) = @_ ;

print " start_element : $elt - >{ Name }\ n";

}

sub end_element {

my ($self , $elt) = @_ ;

print " end_element : $elt - >{ Name }\ n" ;

}

Les noms de ces méthodes sont fixés par le standard SAX.
Ici, start_element et end_element correspondent de ma-
nière assez évidente aux éléments ouvrants et fermants.
L’exécution de ce bout de code sur le fichier XML d’exem-
ple affiche :

start_element: host

start_element: name

end_element: name

start_element: network

start_element: interface

start_element: address

end_element: address

...

Pour rechercher un élément particulier, il suffit donc de
filtrer sur son nom, éventuellement en faisant attention au
contexte pour éviter les problèmes de collision. Le code
est trivial et sans grand intérêt, car là où SAX prend son
ampleur, c’est dans la notion assez générique de filtre qu’il
autorise.

282

i

i

“perl” — 2010/9/30 — 13:10 — page 283 — #299
i

i

i

i

i

i

Utiliser SAX

En effet, si un filtre SAX traite son flux XML et renvoie
le résultat toujours sous forme XML, cette sortie peut être
fournie en entrée à un nouveau filtre SAX. Il devient alors
possible de chaîner ainsi plusieurs filtres les uns à la suite
des autres, exactement comme c’est le cas avec les filtres
de texte (grep, sed, cut, awk, etc) dans un shell Unix.

Le module XML::SAX::Machines permet ainsi de réaliser
des chaînes (des tubes, dans la terminologie usuelle) de ma-
nière très naturelle. Bien que les filtres montrés dans cet
exemple n’existent pas tous, cela permet d’illustrer la ma-
nière de construire un tel chaînage :

use XML :: Filter :: Grep ;

use XML :: Filter :: Sort ;

use XML :: Filter :: AsText ;

use XML :: SAX :: Machines qw < Pipeline >;

ne garder que les titres de Kokia

et Aural Vampire

my $grep = XML :: Filter :: Grep -> new (

’// author ’ => qr / Kokia | Aural Vampire /,

) ;

trier les titres par nom d ’ album

et numéro de chanson

my $sort = XML :: Filter :: Sort -> new (

Record => " track " ,

Keys => [

[" album " , " alpha " , " asc "],

[" track - number " , " num " , " asc "],

],

) ;

my $pipe = Pipeline (

$grep => $sort => XML :: Filter :: AsText

➥ => * STDOUT

) ;

$pipe -> parse_file (" music - library . xml ");

283

i

i

“perl” — 2010/9/30 — 13:10 — page 284 — #300
i

i

i

i

i

i

CHAPITRE 14 XML

Cet exemple permettrait, partant d’une hypothétique base
de musiques, de filtrer pour ne garder que les titres des
artistes Kokia et Aural Vampire, puis trierait les titres res-
tants par nom d’album (un tri alphabétique) et numéro de
chanson dans l’album (un tri numérique). Le résultat se-
rait alors transformé en texte simple, plus lisible, qui serait
alors affiché sur la sortie standard.

Cela permet d’illustrer comment fonctionne XML::SAX::-

Pipeline, qui accepte aussi bien un objet correspondant à
un filtre SAX que le simple nom du module correspond
(auquel cas il le charge automatiquement). Le premier et
le dernier argument peuvent être des chemins à passer à
la fonction open() de Perl, ou des descripteurs de fichiers.
Le tout est assez magique et donc un peu perturbant à
maîtriser, mais permet de réaliser des choses étonnantes.

XML::SAX::Machines propose aussi d’autres mécanismes de
multitraitement, comme XML::SAX::Manifold, qui permet
de répartir le traitement de différentes parties du docu-
ment entre différents filtres, et de fusionner les résultats à
la fin.

XML::Twig

Les deux approches utilisées pour manipuler du contenu XML,
le DOM et le SAX, ont chacunes leurs avantages et inconvé-
nients. XML::Twig est une solution qui mélange ces deux ap-
proches. Pour simplifier, l’utilisation typique de XML::Twig se
fait comme suit : le contenu XML est parcouru séquentielle-
ment grâce au SAX parsing, avec une liste de règles qui per-
mettent d’identifier des éléments XML sur lesquels s’arrêter.
Dès qu’un tel élément est trouvé, le parcours séquentiel est
arrêté, et la branche qui part du nœud est chargée entière-

284

i

i

“perl” — 2010/9/30 — 13:10 — page 285 — #301
i

i

i

i

i

i

Créer un objet XML::Twig

ment en mémoire. Il est alors possible de faire du DOM parsing

sur cette partie du contenu.

Le module XML::Twig s’utilise en créant un objet instance,
qui permet de charger du contenu, et d’effectuer toutes les
opérations sur le document dans son ensemble.

Pour changer, supprimer ou ajouter du contenu, XML::Twig

permet d’accéder à des objets éléments (de type XML::-

Twig::Elt). Ces objets éléments représentent un tag XML, et

proposent une grande quantité de méthodes pour altérer le

contenu du document.

Créer un objet XML::Twig

XML::Twig->new(. . .)

La méthode new() permet de créer un objet XML::Twig,
indispensable à l’utilisation de XML::Twig.

my $t = XML :: Twig -> new ()

Une option importante de cette méthode est load_DTD,
qui permet de charger les informations de DTD.

my $t = XML :: Twig -> new (load_DTD => 1) ;

Lorsque cette option est définie à une valeur vraie, XML::-
Twig interprète les instructions relatives aux DTD et charge
les fichiers DTD correspondants.

285

i

i

“perl” — 2010/9/30 — 13:10 — page 286 — #302
i

i

i

i

i

i

CHAPITRE 14 XML

Charger du contenu XML avec
XML::Twig

$t->parse()

$t->parsefile()

$t->parsefile_inplace()

La méthode parse() prend en argument soit une chaîne
de caractères contenant le contenu XML à traiter, soit un
objet de type IO::Handle, déjà ouvert (sur un fichier par
exemple).

Dans la plupart des cas cependant, il est plus utile d’uti-
liser parsefile(), qui permet de lire le contenu depuis un
fichier.

use XML :: Twig ;

my $t = XML :: Twig -> new () ;

$t -> parse (’ <doc >< elt couleur =" rouge "/ >

➥ </ doc > ’) ;

$t -> parsefile (’/ un / fichier . xml ’);

$t -> parsefile_inplace (’/ un / fichier . xml ’);

parsefile_inplace charge un document XML depuis un
fichier ; cependant ce même fichier servira également à
stocker le contenu final modifié. Cette méthode est utile
pour faire des modifications sur un fichier XML.

Info

Cet exemple de code ne produit rien, et c’est normal : contraire-
ment à XML::LibXML, les méthodes parse et parsefile ne ren-
voient rien. Ici, il est juste demandé au module XML::Twig de
charger et parcourir le contenu XML, mais aucune action ou règle
n’a été donnée, donc aucun résultat n’est produit.

286

i

i

“perl” — 2010/9/30 — 13:10 — page 287 — #303
i

i

i

i

i

i

Créer des handlers avec XML::Twig

Il faut en effet créer au moins un gestionnaire (handler, voir la
section suivante) pour interagir avec le document XML.

Créer des handlers avec
XML::Twig

$t->setTwigHandlers(..)

Pour pouvoir interagir avec le document XML, il faut
créer des gestionnaires (handlers). Ce sont des règles qui
associent une expression de type XPath à une référence
sur une fonction. Voici un exemple de gestionnaire :

{

’ liste / pays ’ => \& fonction1 ,

’ ville [@capitale] ’ => \& fonction2 ,

}

Le principe est simple : lors du parcours du document
XML, chaque élément (tag XML) parcouru est comparé
aux expressions XPath des gestionnaires. Lorsqu’une règle
correspond, la fonction associée est évaluée. Celle-ci re-
çoit en arguments :

● Argument 1 : l’objet XML::Twig, (ici $t).

● Argument 2 : un nouvel objet XML::Twig::Elt (ici $elt),
qui correspond à l’élément qui a vérifié la règle du ges-
tionnaire.

Dans l’exemple précédent, si un tag XML a pour nom
pays et comme parent liste, alors il vérifie la première
règle XPath et la méthode f1() est appelée. De manière
semblable, si un élément XML a pour nom ville et com-
porte un attribut capitale, alors f2() est appelée.

Voici un exemple fonctionnel avec ces gestionnaires :

287

i

i

“perl” — 2010/9/30 — 13:10 — page 288 — #304
i

i

i

i

i

i

CHAPITRE 14 XML

use XML :: Twig ;

my $t = XML :: Twig -> new () ;

my $xml = ’ <doc >< liste > ’ .

’< pays nom =" France "> ’ .

’ < ville nom =" Paris " capitale ="1"/ > ’ .

’ < ville nom =" Lyon "/ > ’ .

’ </ pays > ’ .

’ </ liste > </ doc > ’;

my $handlers = {

’ liste / pays ’ => \& f1 ,

’ ville [@capitale] ’ => \& f2 ,

};

$t -> setTwigHandlers ($handlers) ;

$t -> parse ($xml) ;

sub f1 { my ($t , $elt) = @_ ; say " pays " }

sub f2 { my ($t , $elt) = @_ ; say " capitale "}

Attention

Il est important d’appeler setTwigHandlers avant parse ou par-
sefile. En effet, les gestionnaires doivent être en place avant de
parcourir le document XML.

Cet extrait de code affiche :

capitale

pays

En effet, il y a un élément pays qui correspond à la pre-
mière règle, et un élément ville (Paris) qui correspond à
la seconde.

Info

La règle XPath ville[@capitale] est déclenchée avant la règle
liste/pays car XML::Twig attend le tag de fin d’un élément
avant d’examiner les règles. Or, l’élément ville est à l’intérieur
de l’élément pays, donc il se ferme avant. XML::Twig déclenche
les évaluations des règles les plus profondes d’abord : il effectue
un parcours en profondeur dans l’arbre XML.

288

i

i

“perl” — 2010/9/30 — 13:10 — page 289 — #305
i

i

i

i

i

i

Ignorer le contenu XML de sortie

Produire le contenu XML
de sortie

$t->flush()

$elt->flush()

Pour pouvoir produire le contenu XML du document,
la méthode flush peut être utilisée sur l’objet XML::Twig

mais également sur l’objet élément XML::Twig::Elt (reçu
en argument des fonctions du gestionnaire).

flush va produire le contenu XML des éléments qui ont
été parcourus, et décharger la mémoire. Il est donc pos-
sible de parcourir de très gros fichiers en flush-ant réguliè-
rement le contenu.

L’exemple suivant utilise flush sur l’objet XML::Twig (voir
page 291 pour des exemples qui utilisent flush sur des ob-
jets éléments de type XML::Twig::Elt).

use XML :: Twig ;

my $t = XML :: Twig -> new () ;

$t -> parse (’ <doc >< elt couleur =" rouge "/ >

➥ </ doc > ’) ;

$t -> flush () ; # affiche le XML en sortie

Ignorer le contenu XML
de sortie

$t->purge()

$elt->purge()

Il arrive souvent que la tâche à accomplir sur un docu-
ment XML soit en lecture seule, c’est-à-dire que les opéra-

289

i

i

“perl” — 2010/9/30 — 13:10 — page 290 — #306
i

i

i

i

i

i

CHAPITRE 14 XML

tions vont consister uniquement à récupérer des informa-
tions du document, pas à modifier le document lui-même.
Ainsi, le contenu XML du document n’est pas intéressant.
Pour signifier à XML::Twig que le contenu examiné jus-
qu’ici peut être déchargé de la mémoire, il suffit d’utiliser
purge.

Accéder au nom d’un élément
$elt->name()

Une fois qu’un gestionnaire a été mis en place, il est im-
portant de pouvoir accéder aux données de l’élément qui
a vérifié la règle.

name() permet d’obtenir le nom du tag XML qui a véri-
fié la règle. Voici un exemple qui illustre l’utilisation de
name().

use XML :: Twig ;

my $t = XML :: Twig -> new () ;

$t -> setTwigHandlers ({ ’ villes /* ’ => \& f1 }) ;

$t -> parse (’ < villes >< Paris />< Lyon / > </ villes > ’

) ;

sub f1 { my ($t , $elt) = @_ ; # récupère

les paramètres

say $elt -> name () ; # affiche le nom

}

Ce programme affiche :

Paris

Lyon

290

i

i

“perl” — 2010/9/30 — 13:10 — page 291 — #307
i

i

i

i

i

i

Changer le nom d’un élément

Attention

La méthode name et les suivantes s’appliquent sur un objet XML::-
Twig::Elt, obtenu en général en argument de la fonction asso-
ciée au gestionnaire. Une erreur très fréquente est d’essayer d’uti-
liser ces méthodes sur l’objet XML::Twig, ce qui ne fonctionnera
pas

Changer le nom d’un élément

$elt->set_name(..)

Pour changer le nom d’un tag XML, il suffit d’utiliser
set_name() :

use XML :: Twig ;

my $t = XML :: Twig -> new () ;

$t -> setTwigHandlers ({ ’ villes /* ’ => \& f1 }) ;

$t -> parse (’ < villes >< Paris />< Lyon / > </ villes > ’

) ;

sub f1 { my ($t , $elt) = @_ ; # récupère les

paramètres

$elt -> set_name (" Nancy ") ; # change le nom

$elt -> flush () ;

}

$t -> flush () ;

Ce qui donne en sortie :

<villes><Nancy/><Nancy/></villes>

291

i

i

“perl” — 2010/9/30 — 13:10 — page 292 — #308
i

i

i

i

i

i

CHAPITRE 14 XML

Obtenir le contenu texte
d’un élément

$elt->text()

$elt->text_only()

$elt->trimmed_text();

La méthode text() renvoie le contenu PCDATA et
CDATA de l’élément. Les tags XML ne sont pas retour-
nés, seul leur contenu texte l’est. Cette méthode renvoie
également le contenu des éléments enfants.

text_only se comporte de la même manière, mais seul le
contenu de l’élément est renvoyé, pas ceux de ses enfants.

trimmed_text est identique à text(), à la différence que les
espaces superflues sont retirées de la chaîne de caractères
retournée.

Astuce

La chaîne ’no_recurse’ peut être passée en argument pour se
restreindre au contenu de l’élément, et ne pas inclure ceux des
enfants de l’élément.

Changer le contenu XML
d’un élément

$elt->set_inner_xml(..)

Dans certains cas, il est utile de remplacer complètement
le contenu d’un élément. Il est possible de donner une
chaîne XML à l’objet XML::Twig::Elt pour remplacer son

292

i

i

“perl” — 2010/9/30 — 13:10 — page 293 — #309
i

i

i

i

i

i

Interagir avec les attributs d’un élément

contenu (sans changer le tag de l’élément lui-même), grâce
à la méthode set_inner_xml :

use XML :: Twig ;

my $t = XML :: Twig -> new () ;

$t -> setTwigHandlers ({ ’ villes ’ => \& f1 }) ;

$t -> parse (’ < villes > </ villes > ’) ;

sub f1 {

my ($t , $elt) = @_ ; # récupère les param .

$elt -> set_inner_xml (

’ < ville name =" Paris "/ > ’

);

}

$t -> flush () ;

Le résultat est le suivant :

<villes><ville name="Paris"/></villes>

Interagir avec les attributs
d’un élément

$elt->att()

$elt->set_att(..)

$elt->del_att() . . .

Il est très facile de manipuler les attributs d’un élément
XML::Twig::Elt, en utilisant les méthodes suivantes :

● att($nom_attribut) : cette méthode renvoie la valeur
de l’attribut dont le nom est $nom_attribut.

● set_att($nom_attribut, $valeur_attribut) : cette mé-
thode change la valeur de l’attribut dont le nom est
$nom_attribut, à la valeur $valeur_attribut.

293

i

i

“perl” — 2010/9/30 — 13:10 — page 294 — #310
i

i

i

i

i

i

CHAPITRE 14 XML

● del_att($nom_attribut) : cette méthode supprime l’at-
tribut dont le nom est $nom_attribut.

● att_exists($nom_attribut) : cette méthode renvoie vrai
si l’élément contient un attribut dont le nom est $nom_at-
tribut.

Voir page 295 pour un exemple de code illustrant l’utili-
sation de ces méthodes.

Interagir avec les éléments
environnants

$elt->root()

$elt->parent()

$elt->children(), . . .

Lorsqu’une règle du gestionnaire est vérifiée, XML::Twig
charge l’élément qui vérifie la règle et donne accès à l’arbre
de tous les éléments qui n’ont pas encore été flush-és ou
purge-és.

Ainsi, XML::Twig offre un véritable support DOM, et four-
nit une liste conséquente de méthodes pour naviguer dans
l’arbre du document, en partant de l’élément, ou de la
racine. En voici une sélection :

● $elt-root() : cette méthode renvoie un objet XML::-

Twig::Elt qui correspond à la racine du document XML.

● $elt-parent() : cette méthode renvoie un objet XML::-
Twig::Elt qui correspond au parent de l’élément en
cours.

● $elt-children() : cette méthode renvoie la liste des en-
fants de l’élément. Les éléments enfants sont également
de type XML::Twig::Elt.

294

i

i

“perl” — 2010/9/30 — 13:10 — page 295 — #311
i

i

i

i

i

i

Interagir avec les éléments environnants

● $elt-ancestors() : cette méthode renvoie la liste des
« ancêtres » de l’élément. Cette liste contient le parent
de l’élément, le parent du parent, etc., jusqu’à la racine
du document.

● prev_sibling et prev_siblings : prev_sibling renvoie
l’élément précédant l’élément en cours, au même ni-
veau de l’arbre XML2. prev_siblings renvoie la liste
des éléments de même niveau précédant l’élément en
cours.

● next_sibling et next_siblings : ces méthodes sont les
pendants de prev_sibling et prev_siblings, et renvoient
le « frère » suivant, ou la liste des « frères » suivants.

Info

Toutes ces méthodes peuvent prendre en paramètre une expres-
sion XPath optionnelle, qui permet de filtrer les résultats. Ainsi,
pour obtenir tous les enfants d’un élément donné qui ont l’attri-
but couleur à la valeur bleu, il suffit d’écrire :

$elt -> children (’ *[@couleur = " bleu "] ’);

Cet extrait de code utilise les méthodes précédentes pour
manipuler un document XML complexe :

use XML :: Twig ;

my $t = XML :: Twig -> new () ;

my $xml = ’ <doc >< liste > ’ .

’< pays nom =" France "> ’ .

’ < ville nom =" Paris " capitale ="1"/ > ’ .

’ < ville nom =" Lyon "/ > ’ .

’ </ pays > ’ .

’< pays nom =" Allemagne "> ’ .

’ < ville nom =" Berlin " capitale ="1" > ’ .

’ Ceci est Berlin ’ .

2. Sibling veut dire « frères et sœurs ».

295

i

i

“perl” — 2010/9/30 — 13:10 — page 296 — #312
i

i

i

i

i

i

CHAPITRE 14 XML

’ </ ville > ’ .

’< ville nom =" Francfort " capitale ="0"/ > ’ .

’ </ pays > ’ .

’ </ liste > </ doc > ’;

my $handlers = {

’ pays ’ => \& f1 ,

};

$t -> setTwigHandlers ($handlers) ;

$t -> parse ($xml) ;

sub f1 {

my ($t , $elt) = @_ ;

say " racine : " . $elt -> root -> name ;

say $elt -> name . ’: ’ . $elt -> att (’ nom ’) ;

my @enfants = $elt -> children ;

say " nb enfants : " . scalar (@enfants) ;

foreach (@enfants) {

say " - " . $_ -> name . ’: ’ .

➥ $_ -> att (’ nom ’);

say " est capitale " if $_ -> att (

➥ ’ capitale ’);

my $texte = $_ -> trimmed_text () ;

say " ’ $texte ’" if length $texte ;

}

$elt -> purge ;

}

Ce programme affiche :
racine : doc

pays: France

nb enfants : 2

- ville: Paris

est capitale

- ville: Lyon

racine : doc

pays: Allemagne

nb enfants : 2

- ville: Berlin

est capitale

’Ceci est Berlin’

- ville: Francfort

296

i

i

“perl” — 2010/9/30 — 13:10 — page 297 — #313
i

i

i

i

i

i

Effectuer un copier-coller

Effectuer un copier-coller

$elt->copy() $elt->paste(..)

La puissance de XML::Twig s’illustre dans une fonctionna-
lité majeure de ce module : le copier-coller.

La méthode copy renvoie une copie profonde de l’élé-
ment, c’est-à-dire que tous les éléments enfants sont éga-
lement copiés.

La méthode cut coupe l’élément. Dorénavant, il n’est plus
attaché à l’arbre DOM, il n’appartient plus au document
XML. Cependant il peut être utilisé, notamment en argu-
ment à la méthode paste.

La méthode paste permet de coller un élément qui a été
précédemment copié ou coupé. paste prend en argument la
position à laquelle coller, et l’élément à coller. La position
peut être :

● before : l’élément à coller est alors placé avant l’élément
courant.

● after : l’élément à coller est alors placé après l’élément
courant.

● first_child : l’élément à coller est inséré comme pre-
mier enfant de l’élément courant.

● last_child : l’élément à coller est inséré comme dernier
enfant de l’élément courant.

Attention

La méthode paste() doit être appliquée sur l’élément source, qui
a été copié ou coupé, et non sur l’élément cible. L’élément cible
doit être passé en argument.

297

i

i

“perl” — 2010/9/30 — 13:10 — page 298 — #314
i

i

i

i

i

i

CHAPITRE 14 XML

Voici un exemple :

use XML :: Twig ;

my $t = XML :: Twig -> new () ;

my $xml = ’ <doc >< liste > ’ .

’ < pays nom =" France "> ’ .

’< ville nom =" Paris " capitale ="1"/ > ’ .

’< ville nom =" Lyon " capitale ="0"/ > ’ .

’ </ pays > ’ .

’ < pays nom =" Allemagne "> ’ .

’< ville nom =" Francfort " capitale ="0"/ > ’ .

’ </ pays > ’ .

’ </ liste > </ doc > ’;

my $handlers = {

’ pays [@nom =" Allemagne "] ’ => \& f1 ,

};

$t -> setTwigHandlers ($handlers) ;

$t -> parse ($xml) ;

$t -> flush () ;

sub f1 {

my ($t , $allemagne) = @_ ;

my $francfort =($allemagne -> children ()) [0];

say $francfort -> att (’ nom ’) ;

$francfort -> cut () ;

my $france = $allemagne -> prev_sibling () ;

$francfort -> paste (last_child => $france);

}

Ce programme produit le document XML suivant :

<doc>

<liste>

<pays nom="France">

<ville nom="Paris" capitale="1" />

<ville nom="Lyon" capitale="0" />

<ville nom="Francfort" capitale="0"/>

</pays>

<pays nom="Allemagne">

</pays>

</liste>

</doc>

298

i

i

“perl” — 2010/9/30 — 13:10 — page 299 — #315
i

i

i

i

i

i

Effectuer un copier-coller

Autres références

XML::Twig implémente énormément de méthodes, certaines
étant des synonymes d’autres (ainsi $elt-name() est équi-
valent à $elt-tag() et $elt-gi()). Cet aspect apporte beau-
coup de puissance, mais est quelque peu déroutant pour le dé-
butant. C’est pourquoi ce présent chapitre s’est concentré sur
une sélection des concepts et fonctions majeurs de XML::-

Twig.

Pour acquérir une meilleure maîtrise du module XML::Twig,

consultez sa documentation exhaustive sur CPAN : http://
search.cpan.org/perldoc?XML$::$Twig.

299

i

i

“perl” — 2010/9/30 — 13:10 — page 300 — #316
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 301 — #317
i

i

i

i

i

i

15
Sérialisation
de données

La sérialisation est l’opération consistant à transformer une
structure de données en mémoire en un format pouvant
être transféré ou enregistré sur disque, afin de pouvoir
relire ce format (on dit désérialiser) pour reconstituer la
structure plus tard, dans le même programme, ou dans
un autre programme. Cela permet par exemple d’échan-
ger des données complexes entre des programmes, ou de
sauvegarder l’état mémoire pour une reprise rapide sur
panne. De nombreux formats existent et correspondent
à des types de besoins différents.

Nous examinerons en premier lieu les formats natifs, puis
JSON et YAML.

Sérialiser avec Data::Dumper

use Data::Dumper;

Perl intègre déjà en standard des modules permettant de
sérialiser des structures. Le plus simple est Data::Dumper

qui génère le code Perl permettant de reconstruire la struc-
ture par une simple évaluation.

i

i

“perl” — 2010/9/30 — 13:10 — page 302 — #318
i

i

i

i

i

i

CHAPITRE 15 Sérialisation de données

use Data :: Dumper ;

my % contact = (

dams => {

name => " Damien Krotkine " ,

email => " ... " ,

},

jq => {

name => " Jérôme Quelin " ,

email => " ... " ,

},

book => {

name => " Philippe Bruhat " ,

email => " ... " ,

},

maddingue => {

name => " Sébastien Aperghis - Tramoni " ,

email => " ... " ,

},

) ;

my $serialised = Dumper (\% contact);

print $serialised ;

Cet exemple affiche :
$VAR1 = {

’jq’ => {

’email’ => ’...’,

’name’ => ’Jérôme Quelin’

},

’dams’ => {

’email’ => ’...’,

’name’ => ’Damien Krotkine’

},

’maddingue’ => {

’email’ => ’...’,

’name’ => ’Sébastien Aperghis-Tramoni’

},

’book’ => {

302

i

i

“perl” — 2010/9/30 — 13:10 — page 303 — #319
i

i

i

i

i

i

Sérialiser avec Data::Dumper

’email’ => ’...’,

’name’ => ’Philippe Bruhat’

}

};

Pour relire la structure en mémoire, il suffit d’évaluer la
chaîne ou le fichier dans lequel le résultat de Data::Dumper

a été stocké, avec respectivement eval ou do.

eval $serialised ;

Data::Dumper est suffisamment intelligent pour détecter si
une sous-structure est utilisée plus d’une fois, et il em-
ploiera des références pour éviter de dupliquer les don-
nées.

my % contact = (

dams => {

name => " Damien Krotkine " ,

email => " ... " ,

},

jq => {

name => " Jérôme Quelin " ,

email => " ... " ,

},

book => {

name => " Philippe Bruhat " ,

email => " ... " ,

},

maddingue => {

name => " Sébastien Aperghis - Tramoni " ,

email => " ... " ,

},

) ;

my % project_info = (

perlbook1 => {

name => " Perl Moderne " ,

manager => $contact { dams },

303

i

i

“perl” — 2010/9/30 — 13:10 — page 304 — #320
i

i

i

i

i

i

CHAPITRE 15 Sérialisation de données

team => [

@contact { qw < dams jq book maddingue >}

],

},

Curses_Toolkit => {

name => " Curses :: Toolkit " ,

manager => $contact { dams },

team => [

@contact { qw < dams jq maddingue >}

],

},

) ;

La sérialisation de %project_info donne le résultat sui-
vant :

$VAR1 = {

’perlbook1’ => {

’name’ => ’xxx’,

’team’ => [

{

’email’ => ’...’,

’name’ => ’Damien Krotkine’

},

{

’email’ => ’...’,

’name’ => ’Jérôme Quelin’

},

{

’email’ => ’...’,

’name’ => ’Philippe Bruhat’

},

{

’email’ => ’...’,

’name’ => ’Sébastien Aperghis-Tramoni’

}

],

’manager’ => $VAR1->{perlbook1}{team}[0]

},

304

i

i

“perl” — 2010/9/30 — 13:10 — page 305 — #321
i

i

i

i

i

i

Sérialiser avec Data::Dumper

’Curses_Toolkit’ => {

’name’ => ’Curses::Toolkit’,

’team’ => [

$VAR1->{’perlbook1’}{’team’}[0],

$VAR1->{’perlbook1’}{’team’}[1],

$VAR1->{’perlbook1’}{’team’}[3]

],

’manager’ => $VAR1->{perlbook1}{team}[0]

}

};

La structure est correctement sauvegardée de façon à être
autonome, tout en préservant ses liens internes.

Si les deux structures sont sérialisées en même temps, Data::-
Dumper voit mieux les liens, conservant une meilleure co-
hérence globale :

print Dumper (\% contact , \% project_info) ;

affiche :

$VAR1 = {

contenu de %contact

};

$VAR2 = {

’perlbook1’ => {

’name’ => ’xxx’,

’team’ => [

$VAR1->{’dams’},

$VAR1->{’jq’},

$VAR1->{’book’},

$VAR1->{’maddingue’}

],

’manager’ => $VAR1->{’dams’}

},

etc.

};

305

i

i

“perl” — 2010/9/30 — 13:10 — page 306 — #322
i

i

i

i

i

i

CHAPITRE 15 Sérialisation de données

Mais ces exemples mettent en évidence certains aspects
ennuyeux de Data::Dumper. En premier lieu, le fait qu’il
affecte les données à des variables aux noms courts mais
disgracieux $VAR1, $VAR2, etc. En mode strict, il faut que
ces noms existent, ce qui est plus que gênant. Cela peut
se contourner en utilisant une forme plus élaborée d’appel
de Data::Dumper, qui permet de donner des noms plus
explicites :

print Data :: Dumper -> Dump (

[\% contact , \% project_info],

[qw < contact project_info >]

) ;

affiche :

$contact = {

contenu de %contact

};

$project_info = {

contenu de %project_info

};

C’est mieux, mais cela impose tout de même que ces va-
riables devront exister dans le contexte du programme qui
chargera ces données.

Un autre problème assez évident est que, du côté du pro-
gramme qui va charger les données, il va véritablement
falloir évaluer du code Perl étranger, ce qui est évidem-
ment dangereux. Hormis dans les cas où les modules pré-
sentés ci-après ne seraient pas utilisables, Data::Dumper est
donc à déconseiller comme solution de sérialisation, mais
s’avère un précieux partenaire de déboggage.

306

i

i

“perl” — 2010/9/30 — 13:10 — page 307 — #323
i

i

i

i

i

i

Sérialiser avec Storable

Sérialiser avec Storable

use Storable;

Perl propose un autre module pour la sérialisation, Sto-
rable. La différence majeure avec Data::Dumper est que
Storable, écrit en XS, sérialise sous forme binaire, ce qui
offre un stockage beaucoup plus compact et évite les pro-
blèmes liés à l’évaluation du code généré par Data::Dumper.
Son API, extrêmement simple, rend son utilisation plus
agréable :

copie profonde de % contact

my $serialised = freeze (\% contact);

my $contacts = thaw ($serialised);

sauve dans le fichier

store (\% project_info , " projects . dmp ");

restaure depuis le fichier

my $projects = retrieve (" projects . dmp ") ;

Ces fonctions existent aussi en versions portables, qui sto-
ckent les octets dans l’ordre dit « réseau » : nfreeze(),
nstore().

Toutefois, qui dit format binaire, dit problème de compa-
tibilité. Storable ne fait pas exception mais chaque version
sait bien sûr lire les formats générés par les versions pré-
cédentes, et les versions récentes savent se montrer plus
conciliantes. Globalement, Storable fonctionne comme
on s’y attend.

Rapide, bien plus sûr, Storable constitue donc une so-
lution de sérialisation à recommander pour répondre aux
problèmes de stockage des données en local ou de trans-
fert de structures et objets entre programmes Perl. Bien

307

i

i

“perl” — 2010/9/30 — 13:10 — page 308 — #324
i

i

i

i

i

i

CHAPITRE 15 Sérialisation de données

évidemment, dès qu’il faut communiquer avec des pro-
grammes écrits dans d’autres langages, Storable, spéci-
fique à Perl, devient inapproprié, et il faut recourir à JSON
ou YAML.

JSON

JSON (JavaScript Object Notation) est un format qui dérive en
fait de la syntaxe normale de JavaScript pour construire les
structures, limitée à la seule sous-syntaxe pour réaliser cette
tâche spécifique, pour d’évidentes raisons de sécurité. La syn-
taxe est très naturelle pour un programmeur Perl :

● Les tableaux sont déclarés par des crochets, avec les valeurs
séparées par des virgules : [“value”, . . .].

● Les tables de hachages (la norme JSON parle d’objets) sont
déclarées par des accolades, avec les clés séparées de leur
valeur par un deux-points et les couples clé-valeur séparés
entre eux par des virgules : { key: “value”, . . .}.

● Les booléens sont déclarés avec les littéraux true et false.

● La valeur undef se traduit par le littéral null.

● Les nombres sont reconnus sous forme décimale, avec partie
fractionnelle et notation exponentielle :

42 # valide

3.1415269 # valide

-273.15 # valide

3.086e16 # valide

0755 # NON valide (octal)

0xdeadbeef # NON valide (hexadécimal)

● Toute autre valeur doit être sous forme de chaîne, entre
guillemets, avec les règles usuelles des chaînes en C :

308

i

i

“perl” — 2010/9/30 — 13:10 — page 309 — #325
i

i

i

i

i

i

Sérialiser avec Storable

"The quick brown fox jumps over the lazy dog.\n"

"c:\\windows\\system"

JSON est par défaut en UTF-8. Les caractères Unicode du
plan de base multilingue (entre U+0000 et U+FFFF) peuvent
s’écrire sous la forme \uXXXX où XXXX est la valeur hexa-
décimale de quatre chiffres correspondant au code-point du
caractère.

"J\u00e9r\u00f4me va \u00e0 la p\u00eache

en sifflant \u266A"

Si le caractère n’est pas dans le plan de base, il suffit d’utili-
ser les paires de seizets d’indirection (surrogate pairs).

JSON est donc un format assez simple, léger, qui permet de
représenter de manière directe, et sans trop de réflexion, les
structures typiques rencontrées aussi bien en Perl que dans la
plupart des autres langages dynamiques. Il est donc très utile
pour échanger des données complexes entre des programmes
écrits dans des langages différents.

Plus encore, il est parfaitement adapté au contexte du dé-

veloppement web, pour servir d’intermédiaire entre les pro-

grammes serveurs en Perl et l’interface en HTML et JavaScript,

où l’évaluation du JSON est bien plus rapide que l’analyse du

XML, et son exploitation bien plus aisée. Raison pour laquelle

il a remplacé depuis longtemps ce dernier comme format de

prédilection dans les techniques dites Ajax.

309

i

i

“perl” — 2010/9/30 — 13:10 — page 310 — #326
i

i

i

i

i

i

CHAPITRE 15 Sérialisation de données

Sérialiser avec JSON

use JSON;

Bien évidemment, il existe en Perl des modules appropriés
pour générer et lire le JSON sans problème. Les deux plus
importants à retenir sont JSON (dénommé JSON.pm dans la
suite pour mieux le distinguer du format lui-même) et
JSON::XS. La différence entre les deux est que le premier
est écrit en pur Perl alors que le second est en C, et donc
bien plus rapide. Mais JSON.pm sait utiliser JSON::XS s’il est
présent, ce qui simplifie la tâche.

Dans sa forme la plus simple, ce module s’utilise ainsi :

use JSON ;

my $json_text = to_json (\% struct);

my $perl_struct = from_json ($json_text) ;

Ainsi, avec notre hash de contacts :

my $json_text = to_json (\% contact) ;

print $json ;

cela affiche :

{"jq":{"email":"...",

"name":"Jérôme Quelin"},

"dams":{"email":"...",

"name":"Damien Krotkine"},

"maddingue":{"email":"...",

"name":"Sébastien Aperghis-Tramoni"},

"book":{"email":"...",

"name":"Philippe Bruhat"}}

Les sauts de ligne ont ici été ajoutés pour rendre la sortie
plus lisible, mais JSON se voulant un format très compact,

310

i

i

“perl” — 2010/9/30 — 13:10 — page 311 — #327
i

i

i

i

i

i

Sérialiser avec JSON

il est par défaut généré sans espace ni saut de ligne. Cela
peut se changer en passant des options à ces fonctions, sous
forme de référence à un hash :

my $json_text = to_json (\% struct ,

➥{ ... });

my $perl_struct = from_json ($json_text ,

➥{ ... }) ;

Les options les plus intéressantes sont :

● ascii : tous les caractères Unicode hors ASCII seront
transcrits sous la forme \uXXXX, afin que le résultat soit
parfaitement compatible avec ASCII (7 bits).

● latin1 : l’encodage se fera en ISO-Latin-1 (ISO-8859-
1), les caractères en dehors de ISO-Latin-1 seront trans-
cris sous la forme \uXXXX.

● utf8 : l’encodage se fera en UTF-8.

● pretty : équivalente aux options indent, space_before
et space_after, permet un affichage plus lisible pour les
humains.

● relaxed : autorise le décodage de textes qui ne sont pas
totalement conformes à la norme JSON, dans certaines
limites, ce qui peut être utile pour relire des données
écrites par des humains ou par un mauvais générateur.

En reprenant l’exemple précédent et en ajoutant quelques
options :

my $json_text = to_json (

\% contact , { pretty => 1, ascii => 1 }

) ;

print $json_text ;

affiche :

311

i

i

“perl” — 2010/9/30 — 13:10 — page 312 — #328
i

i

i

i

i

i

CHAPITRE 15 Sérialisation de données

{

"jq" : {

"email" : "...",

"name" : "J\u00e9r\u00f4me Quelin"

},

...

}

Comme il serait ennuyeux de devoir passer ces options
à chaque appel de fonction, JSON.pm permet de créer des
objets afin d’avoir son convertisseur JSON personnalisé.

my $json = JSON -> new ;

les modificateurs d ’ options renvoient

l ’ objet , ce qui permet de les chaîner

$json -> pretty (1) -> space_before (0) ;

$json -> ascii (1) ;

my $json_text = $json -> encode (\% contact);

print $json_text ;

affiche :

{

"jq": {

"email": "...",

"name": "Jérôme Quelin"

},

...

}

Si créer un objet est moyennement intéressant pour les
options assez simples présentées ici, cela devient par contre
indispensable pour exploiter les options avancées telles que
les filtres ou les mécanismes de gestion des données spé-
ciales et inconnues.

À noter que les exemples donnés ici utilisent l’API de la
version 2.xx du module JSON.pm, incompatible avec celle

312

i

i

“perl” — 2010/9/30 — 13:10 — page 313 — #329
i

i

i

i

i

i

Sérialiser avec JSON

de la précédente version. Même si c’est fondamentalement
pour le mieux (fonctions mieux nommées, meilleure API
objet, plus aucune variable globale), il est fâcheux que
l’auteur n’ait pas intégré un moyen pour permettre une
meilleure transition de la v1 à la v2. Pour des usages ba-
siques, les quelques lignes suivantes permettent d’utiliser
l’API de JSON.pm v2 y compris avec la v1 :

use JSON v2 API even with JSON v1

if (JSON -> VERSION < 2.00) {

no warnings ;

* to_json = * JSON :: encode = * JSON :: to_json

= \& JSON :: objToJson ;

* from_json = * JSON :: decode = * JSON ::

from_json

= \& JSON :: jsonToObj ;

}

Le cas typique d’un tel besoin, rencontré par l’un des au-
teurs, est que l’environnement de production ne peut sou-
vent pas utiliser les versions très récentes des modules, de
par leur délai d’intégration dans les distributions.

YAML

Par rapport à JSON, YAML n’est pas tant un format de sériali-
sation qu’un véritable langage de sérialisation. Conçu par des
développeurs chevronnés des langages dynamiques Perl, Py-
thon et Ruby, il est disponible pour tous les langages majeurs,
ce qui le rend très intéressant pour sérialiser des données com-
plexes de manière portable.

Ses capacités viennent toutefois avec un coût, celui de la com-
plexité de sa spécification. Elle ne sera donc examinée ici que
dans ses aspects les plus simples. Ce n’est toutefois pas très
gênant pour commencer car du point de vue de l’utilisateur,

313

i

i

“perl” — 2010/9/30 — 13:10 — page 314 — #330
i

i

i

i

i

i

CHAPITRE 15 Sérialisation de données

cela reste transparent, et surtout YAML est bien plus lisible
que JSON.

YAML possède deux modes de syntaxe : par bloc et en ligne,
qui peuvent se mélanger sans grandes restrictions. La syn-
taxe en ligne est fondamentalement du JSON, ce qui permet
à tout analyseur YAML de pouvoir relire sans problème un fi-
chier JSON. La syntaxe en mode bloc sépare chaque donnée
sur sa ligne propre, et repose fortement sur l’indentation pour
déterminer en partie la profondeur des structures.

● Les commentaires commencent par un dièse #.

● Les valeurs sont reconnues de façon assez naturelle par
l’analyseur YAML, et hormis quand elles contiennent des ca-
ractères faisant partie de la syntaxe, il n’est même pas né-
cessaire d’encadrer les chaînes entre guillemets.

pas besoin de guillemets

The quick brown fox jumps over the lazy dog

par contre, dans ce cas, oui

"Le monsieur te demande : où es-tu ?"

● Les tableaux s’appellent des séquences et sont notés en
mode ligne par des crochets, les valeurs étant séparées par
des virgules :

[Sébastien, 6, Antibes]

En mode bloc, les données sont simplement introduites par
un tiret sur la colonne courante :

- Damien

- Jérôme

- Philippe

- Sébastien

314

i

i

“perl” — 2010/9/30 — 13:10 — page 315 — #331
i

i

i

i

i

i

Sérialiser avec JSON

● Les tables de hachages s’appellent des correspondances

(mappings) et sont notées en mode ligne par des accolades,
les clés séparées de leur valeur par un deux-points et les
couples clé-valeur séparés entre eux par des virgules :

{name: Damien, dept: 94, city: Vincennes}

En mode bloc, les couples clé-valeur sont simplement chacun
sur leur ligne propre :

name: Philippe

dept: 69

city: Villeurbanne

YAML impose que chaque clé soit unique au sein d’une cor-
respondance.

Bien évidemment, ces éléments peuvent s’imbriquer pour
construire des structures complexes :

perlbook1:

- title: Perl Moderne

- publisher: Pearson

- {name: Damien, dept: 94, city: Vincennes}

- {name: Jérôme, dept: 69, city: Lyon}

- {name: Philippe, dept: 69, city: Villeurbanne}

- {name: Sébastien, dept: 6, city: Antibes}

Un point important est qu’un fichier YAML peut contenir plu-

sieurs documents internes. Un document commence par trois

tirets - - -, et continue jusqu’au document suivant, jusqu’à une

fin de document, marquée par trois points . . . ou jusqu’à la

fin du fichier.

315

i

i

“perl” — 2010/9/30 — 13:10 — page 316 — #332
i

i

i

i

i

i

CHAPITRE 15 Sérialisation de données

Sérialiser avec YAML

use YAML;

Sans surprise, de nombreux modules sont disponibles sur
le CPAN, mais il n’est véritablement nécessaire d’en con-
naître qu’un seul, tout simplement nommé YAML, qui cor-
respond à l’implémentation standard, en pur Perl de l’ana-
lyseur YAML. Parmi les autres modules qui méritent d’être
mentionnés se trouvent YAML::Syck qui utilise la biblio-
thèque C libsyck (supporte YAML 1.0), et YAML::XS qui
utilise la libyaml (supporte YAML 1.1). Le bon point
est que YAML détecte seul la présence d’un de ces mo-
dules, et le charge automatiquement afin de bénéficier de
meilleures performances.

Dans tous les cas, l’interface d’utilisation reste la même,
et ressemble un peu à celle de Data::Dumper. Ainsi, pour
transformer des structures en documents YAML, il suffit
d’utiliser la fonction Dump() :

use YAML ;

my % book = (

title => " Perl Moderne " ,

publisher => " Pearson " ,

) ;

my % contact = (

toujours les mêmes informations ..

) ;

print Dump (\% book , \% contact);

affiche :

316

i

i

“perl” — 2010/9/30 — 13:10 — page 317 — #333
i

i

i

i

i

i

Sérialiser avec YAML

publisher: Pearson

title: Perl Moderne

book:

email: ...

name: Philippe Bruhat

dams:

email: ...

name: Damien Krotkine

jq:

email: ...

name: Jérôme Quelin

maddingue:

email: ...

name: Sébastien Aperghis-Tramoni

qui contient deux documents YAML, puisque deux struc-
tures ont été fournies. La fonction DumpFile() permet de
sauver le flux YAML directement dans un fichier :

use YAML qw < DumpFile >;

DumpFile (" perlbook1 . yaml " , \% book , \% contact

➥);

Charger un flux YAML utilise les fonctions inverses Load()
et LoadFile(), qui renvoient logiquement autant de réfé-
rences qu’il y a de documents dans le flux :

use YAML qw < LoadFile >;

my ($book , $contact) =

➥LoadFile (" perlbook1 . yaml ") ;

Le module dispose bien sûr de son lot d’options diverses,
mais il est rare de devoir y faire appel.

Il faut noter que YAML permet aussi de sérialiser des ob-
jets, mais il faut qu’ils disposent des méthodes adéquates.

317

i

i

“perl” — 2010/9/30 — 13:10 — page 318 — #334
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 319 — #335
i

i

i

i

i

i

16
Fichiers de

configuration

Quoi de plus banal que de pouvoir configurer un pro-
gramme ? Pourtant, c’est trop souvent un point laissé de
côté durant le développement, ajouté au dernier moment,
lorsque le temps manque, ce qui aboutit bien fréquem-
ment à cette horreur :

do " $ENV { HOME }/ etc / monprog . pl " ;

Un fichier de configuration est un fichier de données
mortes, qui doivent donc impérativement rester séparées
du code.

Deux grands cas d’utilisation se distinguent : d’un côté,
la simple affectation de paramètres, pour lequel le format
.INI est très bien adapté, de l’autre, la définition de struc-
tures complexes, pour lesquelles JSON (voir page 308)
ou YAML (voir page 313) fournissent enfin une réponse
universelle.

i

i

“perl” — 2010/9/30 — 13:10 — page 320 — #336
i

i

i

i

i

i

CHAPITRE 16 Fichiers de configuration

Fichiers .INI
use Config::IniFiles;

Le fichier .INI, popularisé par Microsoft, permet d’affec-
ter des valeurs à des paramètres (param = value), eux-
mêmes groupés au sein de sections dont le nom est donné
entre crochet ([section_name]), et supporte des commen-
taires, commençant par un point-virgule (;) et jusqu’à la
fin de la ligne.

Toutefois, n’ayant jamais été vraiment formalisé de ma-
nière normative, de nombreuses extensions ou variations
de ce format existent au gré des différentes implémenta-
tions : support du dièse (#) comme début de commentaire,
support de séquences d’échappement (\t, \n, \xNNNN. . .),
support de continuation de ligne (avec une barre oblique
inverse \ en fin de ligne), etc.

Sans surprise, de nombreux modules sont disponibles sur
CPAN pour lire des fichiers .INI, mais Config::IniFiles
est probablement le plus complet de tous, et supporte en
particulier plusieurs extensions.

Son API n’est pas tout à fait orthodoxe, avec un mélange
de méthodes nommées en minuscules et d’autres en ca-
mel case, mais elle est globalement agréable et pratique à
utiliser, ce qui est tout de même le principal.

Avec ce fichier de configuration comme exemple :

[general]

stats_path = /var/cache/stats.yml

[network]

port = 1984

address = localhost

timeout = 5

320

i

i

“perl” — 2010/9/30 — 13:10 — page 321 — #337
i

i

i

i

i

i

Fichiers .INI

lire des paramètres se fait ainsi :

use Config :: IniFiles ;

my $config = Config :: IniFiles -> new (

- file => " / etc / mysoft . conf "

) ;

my $port = $config -> val (network => " port ") ;

Point intéressant, la méthode val() permet de gérer di-
rectement des valeurs par défaut, ce qui évite de devoir le
faire avec // ou son équivalent sur les vieux Perl :

my $port =

➥$config -> val (network => " port " , 1984) ;

Config::IniFile a d’ailleurs une gestion intéressante des
valeurs par défaut, permettant par exemple d’aller cher-
cher celles-ci dans une section particulière, qui peut être
indiquée avec l’option -default de new(). Curieusement,
il considère par défaut les fichiers vides comme une erreur,
à moins de passer l’option -allowempty à vrai.

Le module propose aussi d’hériter depuis un objet exis-
tant, spécifié avec l’option -import : les sections sont fu-
sionnées, mais les paramètres provenant du fichier analysé
ont priorité.

my $default = Config :: IniFiles -> new (

- file => " / etc / mysoft . global . conf "

) ;

my $config = Config :: IniFiles -> new (

- import => $default ,

- file => " / etc / mysoft . local . conf " ,

) ;

321

i

i

“perl” — 2010/9/30 — 13:10 — page 322 — #338
i

i

i

i

i

i

CHAPITRE 16 Fichiers de configuration

D’autres options de new() permettent de contrôler les ex-
tensions de syntaxe précédemment mentionnées :

● -allowcontinue : active le support des continuations de
ligne par le caractère antislash “\”.

● -commentchar et -allowedcommentchars : permettent de
spécifier les caractères de début de commentaire, par
défaut “#” et “;”.

● -nocase : permet de gérer les sections et paramètres de
manière insensible à la casse (c’est-à-dire sans distinction
entre majuscules et minuscules).

Cette présentation rapide couvre déjà une bonne partie
des usages courants, par exemple récupérer des valeurs
depuis le fichier de configuration, mais Config::IniFiles
offre une gestion complète des paramètres, sections et grou-
pes (encore une extension au format), permettant de les
ajouter ou les détruire à la volée. Et pour être pleinement
utile, il permet aussi de sauver la nouvelle configuration
sur disque.

Il propose enfin une interface tie() pour ceux qui pré-
fèrent que tout ressemble à un hash :

tie my % config ,

" Config :: IniFiles " ,

- file => "/ etc / mysoft . conf ";

print $config { network }{ port };

affiche "1984"

Pour ne rien gâcher, ce module existe depuis déjà plu-
sieurs années, d’où une bonne disponibilité sous forme de
paquet pour votre distribution favorite, et il est toujours
bien maintenu.

322

i

i

“perl” — 2010/9/30 — 13:10 — page 323 — #339
i

i

i

i

i

i

Fichiers .INI

Utilisation de JSON/YAML

Une question qui peut naturellement se poser est, après tout,
pourquoi ne pas utiliser JSON ou YAML comme format de
configuration ? Comme ces formats peuvent « tout faire », au-
tant s’en servir aussi dans ce cas-là.

Certes, mais il faut pousser la réflexion plus loin. Le problème
de JSON et YAML est que leur syntaxe, quoique relativement
simple (comparée à du XML par exemple), reste néanmoins
plus exigeante que celle d’un fichier .INI, et les modules d’ana-
lyse de ces derniers pardonnent ainsi beaucoup plus de petites
erreurs. Par ailleurs, si JSON et YAML sont assez faciles à lire,
ils restent moins naturels à écrire et demandent donc plus de
réflexion. JSON en particulier demande de respecter de nom-
breux détails de syntaxe qui le rend vraiment peu intéressant
comme format de fichier de configuration, ce qui fera donc
préférer YAML pour sa plus grande clarté.

Pour des fichiers de configuration courants, la structure sec-
tion / clé / valeur est largement suffisante, et YAML n’apporte

aucun gain. Par contre, il devient bien plus intéressant dès qu’il

s’agit de gérer des données plus complexes, qui ne rentrent pas

dans le cadre simpliste du couple clé-valeur, l’exemple typique

étant le stockage de données arborescentes.

323

i

i

“perl” — 2010/9/30 — 13:10 — page 324 — #340
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 325 — #341
i

i

i

i

i

i

Partie
V

–
Program

m
ation

événem
entielle

17
Principes généraux

de POE

La programmation événementielle, ou programmation asyn-
chrone, peut facilement dérouter le développeur qui n’a
pas encore été confronté à cette manière de concevoir et
d’écrire des programmes, mais elle est au cœur de nom-
breux problèmes actuels. Parmi les premiers exemples qui
viennent en tête, il y a les interfaces utilisateurs, qu’elles
soient graphiques ou en mode console ou encore les ser-
veurs réseau qui doivent généralement être en mesure de
répondre à plus d’un client à la fois. Dans tous les cas,
il s’agit d’être en mesure de traiter des événements qui
peuvent survenir à tout moment (connexion d’un client,
clic sur un widget, etc.), ce qui est impossible à réaliser
avec un programme classique à flot d’exécution continu.

Il faut donc savoir reconnaître la nature asynchrone d’un
futur logiciel avant de commencer à effectivement co-
der pour éviter de douloureuses déconvenues par la suite.
L’un des auteurs peut ainsi témoigner des conséquences
que peut engendrer un choix trop rapide. Brossons rapi-
dement le contexte : il fallait développer un couple de
démons, un serveur, un client, devant dialoguer par ré-
seau, chaque client se connectant sur l’ensemble des ser-
veurs déployés. Chaque démon doit donc gérer un certain

i

i

“perl” — 2010/9/30 — 13:10 — page 326 — #342
i

i

i

i

i

i

CHAPITRE 17 Principes généraux de POE

nombre de connexions actives, une demi-douzaine dans le
cas des clients, une trentaine dans le cas des serveurs. Par
peur de ne pas avoir le temps de maîtriser POE (très peu
de temps de développement avait été accordé), cet auteur
s’est tourné vers des modules plus simples à comprendre,
IO::Socket et IO::Select. Et en effet, il est facile d’obtenir
ainsi un prototype fonctionnel. Mais une fois en produc-
tion, les problèmes et bogues arrivent bien rapidement, et
même des mois plus tard, certains problèmes « incompré-
hensibles » dus à une mauvaise gestion des sockets. Tout
cela parce que le choix de réinventer sa propre roue1, sur-
tout quand le temps manque, est très rarement une bonne
idée. La leçon à retenir est que le temps passé à apprendre
un environnement comme POE doit se voir comme un in-
vestissement qui ne pourra que s’avérer profitable à long
terme.

POE
POE2 est un environnement de programmation asynchrone
pour Perl. Le principe est d’avoir plusieurs tâches qui tra-
vaillent ensemble, d’où le nom de multitâche coopératif.

Cela rappellera peut-être de mauvais souvenirs à ceux qui
ont connu Windows 98 (et ses prédécesseurs) ou Mac-
OS Classic, qui étaient des systèmes d’exploitation de ce
type. Ainsi, si un programme était bloqué, cela figeait l’en-
semble du système d’exploitation. D’autre part, le partage
de ressources (processeur, mémoire et I/O) était inefficace
et injuste.

1. Ou plutôt, comme dirait Jean Forget, réinventer sa propre brosse à
dents ; cf. http://journeesperl.fr/2007/talk/916 pour la vidéo de sa
présentation.

2. Perl Object Environment, bien que l’acronyme ait donné lieu à de nom-
breuses autres interprétations sérieuses, telles que Parallel Object Executor
ou plus facétieuses comme Part Of an Elephant ou Potatoes Of Eternity.

326

i

i

“perl” — 2010/9/30 — 13:10 — page 327 — #343
i

i

i

i

i

i

Événements

Pourquoi alors utiliser le même paradigme ? Parce que mis
en œuvre à travers une application, le problème est com-
plètement différent. En effet, une application est écrite
par un seul développeur, ou une équipe plus ou moins
réduite. Dans tous les cas, il est (relativement) facile de
respecter l’environnement et quelques règles de bon fonc-
tionnement.

Cela réduit les inconvénients du multitâche coopératif,
en révélant toute la puissance d’un environnement multi-
tâche.

POE est donc un environnement multitâche, mais utilise
pour cela un seul processus et un seul thread ; ce qui a
comme conséquence immédiate que les applications sont
facilement portables, même sur les systèmes qui ne dis-
posent pas de l’appel système fork ou sur les interpréteurs
Perl qui ne sont pas multithreadés.

Deuxième conséquence : les applications sont beaucoup
plus faciles à écrire. Finis les IPC et autres verrous pour
s’assurer l’accès à une ressource : comme une seule tâche
est en cours, toute action est considérée comme étant ato-
mique.

POE est donc analogue à des bibliothèques de gestion de
threads comme Pth en C, mais la comparaison s’arrête
là car POE est de plus haut niveau et surtout entièrement
orienté objet.

Événements
Une application POE est une suite d’événements (events) que
les tâches s’envoient. La documentation parle encore sou-
vent d’états (states), du fait de la construction originelle
sous forme de machine à états, qui a par la suite évo-
lué. Un événement signale simplement qu’il s’est passé
quelque chose, par exemple :

327

i

i

“perl” — 2010/9/30 — 13:10 — page 328 — #344
i

i

i

i

i

i

CHAPITRE 17 Principes généraux de POE

● un fichier est prêt ;

● une alarme a expiré ;

● une nouvelle connexion est arrivée ;

● ou n’importe quel autre événement indiquant que l’ap-
plication a changé d’état.

Les gestionnaires d’événements sont des callbacks, c’est-à-
dire des fonctions enregistrées pour être appelées lorsque
ces événements se produisent.

Sessions
Les tâches sont appelées des sessions en POE. Une session
a des ressources privées, tels que descripteurs de fichiers,
variables, etc. Elle dispose en particulier d’une pile (heap),
dans laquelle elle peut stocker ce qu’elle veut. Elle peut
aussi s’envoyer des événements privés, et même avoir des
sessions filles. Pour faire l’analogie avec un système d’ex-
ploitation, une session est donc comme un processus.

Une session reste en vie tant qu’il le faut, c’est-à-dire tant
qu’elle a des événements à traiter. Quand elle n’a plus
rien à faire, la session s’arrête. Ceci peut paraître un peu
nébuleux, mais est en fait très simple : une session peut par
exemple référencer une connexion, avec des événements
pour réagir à ce qui se passe sur cette connexion. Tant
que la connexion est active, la session reste en vie, car
celle-ci peut générer des événements à traiter. Quand la
connexion est fermée et libérée, alors la session n’a plus de
but (la connexion ne peut plus générer d’événements) et
est donc terminée par POE.

Le corollaire est qu’une session, lors de sa création, doit
obligatoirement créer et référencer quelque chose qui va
la maintenir en vie. Sinon, elle est sera aussitôt passée au
ramasse-miettes de POE.

328

i

i

“perl” — 2010/9/30 — 13:10 — page 329 — #345
i

i

i

i

i

i

Le noyau POE

Le noyau POE

Le noyau est le cœur de POE. Il est chargé d’acheminer les
événements, d’appeler le code devant les gérer, d’orches-
trer les sessions, mais aussi de vérifier des conditions en
générant des événements si besoin. Le noyau est en effet
le gestionnaire du temps (c’est lui qui va savoir quand lan-
cer une alarme) et le responsable des objets bas-niveau tels
que les descripteurs de fichiers et de connexions.

Le noyau est implémenté dans le module POE::Kernel, et
fournit la méthode run() qui est en fait la boucle princi-
pale du programme, ne retournant pas tant qu’il reste des
tâches :

lance le programme une fois

les sessions créées

POE :: Kernel -> run ;

Un mot sur les performances

POE est un framework avancé, très orienté objet, ce qui im-
plique une perte d’efficacité comparé au procédural pur. Il
reste cependant performant et devrait suffire pour la majorité
des besoins, d’autant plus qu’il apporte de nombreux avan-
tages. Nous verrons par la suite qu’il existe des extensions per-
mettant d’obtenir de meilleures performances.

En parlant chiffres : pour une application gérant jusqu’à 1 000

messages par seconde (ce qui correspond à la plupart des ap-

plications), POE convient sans hésiter. Au delà de 10 000 mes-

sages par seconde, POE ne suffit plus, ou en tout cas plus tout

seul (voir au Chapitre 19 consacré à POE distribué). Entre ces

deux valeurs, une évaluation reste nécessaire.

329

i

i

“perl” — 2010/9/30 — 13:10 — page 330 — #346
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 331 — #347
i

i

i

i

i

i

18
POE en pratique

Créer une session POE
POE::Session->create

Une session POE est créée avec le constructeur de session.
Celui-ci accepte divers arguments, dont le plus important
est inline_states qui définit les événements1 que la ses-
sion s’attend à recevoir :

use POE ;

POE :: Session -> create (

inline_states => {

_start => sub {

say " session démarrée ";

},

},

) ;

POE :: Kernel -> run ;

1. Au début, Rocco Caputo voulait créer avec POE un générateur de
machines à états, d’où le nom de l’argument.

i

i

“perl” — 2010/9/30 — 13:10 — page 332 — #348
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

Une session va être créée et donc planifiée par le noyau
POE lorsque celui-ci sera lancé.

L’événement _start va automatiquement être appelé lors
du démarrage de la session, après la création de la session
elle-même. Puis, comme la session n’a pas créé d’objet qui
la maintienne en vie, POE va la passer au ramasse-miettes.

Le noyau va alors se rendre compte qu’il ne reste plus de
tâches en cours, et va donc sortir de la méthode run(). Le
programme s’arrêtera alors.

Envoyer un événement

POE::Kernel->yield

use POE ;

POE :: Session -> create (

inline_states => {

_start => sub {

POE :: Kernel -> yield (" tick ");

},

définition de l ’ événement " tick "

tick => sub {

say scalar localtime ;

POE :: Kernel -> delay (tick => 1) ;

},

},

) ;

POE :: Kernel -> run ;

Ici, la session lors de sa création (dans la fonction traitant
l’événement _start) va s’envoyer un événement à elle-

332

i

i

“perl” — 2010/9/30 — 13:10 — page 333 — #349
i

i

i

i

i

i

Passer des paramètres

même avec la méthode yield() du noyau. Le noyau sait
donc que la session a du travail en cours, étant donné qu’il
y a un événement qui lui est destiné. La session ne sera pas
détruite tout de suite.

Le noyau va s’occuper d’envoyer l’événement et d’ap-
peler le callback associé. Celui-ci est défini en ajoutant
un événement auquel devra réagir la session dans les in-
line_states, avec le callback associé.

Le callback est donc appelé par le noyau, permettant d’im-
primer la date et l’heure courante. Le gestionnaire d’évé-
nements va alors à nouveau s’envoyer un événement tick,
mais au bout d’une seconde.

Ceci se fait avec la méthode delay() du noyau. En effet,
si la fonction Perl sleep avait été utilisée, le programme
se serait mis en pause. . . et le noyau aussi ! Et les autres
sessions, s’il y en avait, n’auraient pas été planifiées tout de
suite, ce qui aurait ralenti tout le programme – là où le but
était de mettre en pause la session courante seulement !

Bien sûr, le fait de planifier l’envoi d’un événement in-
dique au noyau de garder la session courante active, pour
pouvoir traiter les événements futurs.

Le programme ci-dessus va donc imprimer la date et l’heure
courantes toutes les secondes, sans jamais s’arrêter.

Passer des paramètres
Passer un argument se fait très simplement à la suite du
nom d’événement à planifier :

use POE ;

POE :: Session -> create (

inline_states => {

333

i

i

“perl” — 2010/9/30 — 13:10 — page 334 — #350
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

_start => sub {

passage d ’ argument

POE :: Kernel -> yield (next => 10);

},

next => sub {

my $i = $_ [ARG0];

say $i ;

POE :: Kernel -> yield (next => $i -1)

unless $i == 0;

},

},

) ;

POE :: Kernel -> run ;

Pour le récupérer, toutefois, il faut le chercher à un offset
particulier de $@_.

Info

POE passe un grand nombre de paramètres additionnels aux call-
backs (dont la session, la pile, l’objet courant, une référence sur
le noyau lui-même, etc.). POE exporte donc des constantes per-
mettant de récupérer facilement les paramètres souhaités.

Le premier argument passé lors de l’appel à yield() sera
accessible via $_[ARG0], le suivant via $_[ARG1], jusqu’au
dernier disponible via $_[$#_]. Les paramètres sont en effet
ajoutés en dernier, donc tous les arguments peuvent être
récupérés ainsi :

my @params = @_ [ARG0 .. $# _];

Dans l’exemple ci-dessus, le callback va récupérer la va-
leur du paramètre dans $i, l’afficher, puis lancer un autre
événement en décrémentant le paramètre. Si le paramètre
$i vaut 0, l’événement n’est pas planifié – et donc la ses-

334

i

i

“perl” — 2010/9/30 — 13:10 — page 335 — #351
i

i

i

i

i

i

Utiliser des variables privées

sion ne sert plus à rien, passe donc au ramasse-miettes, et
le programme s’arrête.

Le programme va donc afficher les valeurs 10 à 0, puis
s’arrêter.

Utiliser des variables privées

$_[HEAP]

Une session dispose d’un espace réservé – la pile (heap) –
lui permettant de stocker des données. Ces données sont
privées et accessibles uniquement par la session. En pra-
tique, la pile est simplement un scalaire, qui est la plupart
du temps une référence de hash pour stocker plusieurs va-
riables :

use POE ;

foreach my $counter (1, 3) {

POE :: Session -> create (

args => [$counter],

inline_states => {

_start => sub {

my ($h , $i) = @_ [HEAP , ARG0];

$h - >{ counter } = $i ;

POE :: Kernel -> yield (" next ");

},

next => sub {

my $h = $_ [HEAP];

say $h - >{ counter };

POE :: Kernel -> yield (" next ")

unless $h - >{ counter }-- == 0;

},

},

335

i

i

“perl” — 2010/9/30 — 13:10 — page 336 — #352
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

);

}

POE :: Kernel -> run ;

Astuce

Notez le paramètre args de la méthode create(), spécifiant une
liste à passer en argument lors de l’événement _start. Ici, un seul
argument est passé, mais l’usage d’une référence de liste permet
d’en passer autant que nécessaire.

Dans cet exemple, deux sessions seront lancées et décré-
menteront leurs paramètres jusqu’à zéro, à tour de rôle.
La sortie du programme sera donc :

1 # première session

3 # deuxième session

0 # première, qui s’arrête

2 # deuxième à nouveau

1 # deuxième

0 # deuxième, qui s’arrête

le programme s’arrête aussi

Nous commençons à voir l’intérêt de POE, qui va donc
empiler les événements générés et les délivrer au fur et à
mesure aux sessions concernées. Le noyau traite les événe-
ments avec une politique « premier arrivé, premier servi »
ou FIFO (First In, First Out).

Communiquer avec une autre
session

POE::Kernel->post

336

i

i

“perl” — 2010/9/30 — 13:10 — page 337 — #353
i

i

i

i

i

i

Communiquer avec une autre session

Jusqu’à présent, les exemples montraient des sessions qui
s’envoyaient des événements à elles-mêmes. Mais bien sûr
POE permet aux sessions de communiquer entre elles et de
se transmettre des informations.

Dans l’exemple qui suit, une première session attend des
événements debug pour les afficher. Une deuxième session
va décrémenter un compteur, en envoyant des messages à
la première pour indiquer ce qu’il se passe2 :

use POE ;

POE :: Session -> create (

inline_states => {

_start => sub {

POE :: Kernel -> alias_set (" logger ");

},

debug => sub {

my @args = @_ [ARG0 .. $# _];

say @args ;

},

},

) ;

POE :: Session -> create (

inline_states => {

_start => sub {

POE :: Kernel -> yield (tick => 3);

},

tick => sub {

my $i = $_ [ARG0];

2. Même si l’action de log est ici très simple, cela permettrait par
exemple d’avoir une session connectée à une base de données, ou faisant
des traitements complexes (en multiplexant les logs sur différents sup-
ports par exemple). L’exemple n’est donc pas si tiré par les cheveux que
cela. . .

337

i

i

“perl” — 2010/9/30 — 13:10 — page 338 — #354
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

passage de message à la 1 ère session

POE :: Kernel -> post (logger => debug

➥ => " test - i vaut $i ");

POE :: Kernel -> yield (tick => $i -1)

unless $i == 0;

},

},

) ;

POE :: Kernel -> run ;

Si rien n’était fait lors de son démarrage, la première ses-
sion créée par POE::Session->create démarrerait, mais s’ar-
rêterait immédiatement. En effet, comme elle n’aurait rien
à faire, POE la passerait au ramasse-miettes.

L’astuce consiste donc à lui affecter un alias, qui est un
nom symbolique pour la session. Comme tout le monde
peut envoyer un message à un alias, POE ne peut savoir à
l’avance si la session est utile ou pas. Dans le doute, il va
donc garder la session en vie.

Et heureusement, car la deuxième session va lui envoyer
des messages avec la ligne :

POE :: Kernel -> post (logger => debug

➥ => " test - i vaut $i ");

La syntaxe est assez simple : la méthode post() du noyau
permet de spécifier dans l’ordre le destinataire, l’événe-
ment à envoyer et des paramètres éventuels.

Une fois que la deuxième session a envoyé ses quatre mes-
sages, elle va s’arrêter. Mais POE n’arrête toujours pas la
première session, car elle a un alias ! Ce qui pose problème,
car le programme dans ce cas ne s’arrêterait jamais, sans
toutefois ne rien faire. En effet, la première session serait
toujours en attente, mais aucune autre session n’existant,
elle attendrait en vain. . .

338

i

i

“perl” — 2010/9/30 — 13:10 — page 339 — #355
i

i

i

i

i

i

Envoyer un message différé

Pour empêcher cela, POE va détecter quand il ne reste que
des sessions maintenues en vie grâce à des alias. Si c’est
le cas, le noyau va envoyer un signal IDLE à toutes les
sessions, pour leur donner une chance de se réveiller et
de recommencer à travailler. Si aucune ne recommence à
travailler, alors le noyau enverra un signal ZOMBIE qui n’est
pas gérable par les sessions : celles-ci vont donc mourir et
le programme se terminer. . . Ouf !

Attention

Un programme POE implique une bonne coopération des ses-
sions entre elles. En effet, si l’un des gestionnaires d’événements
bloque pour une raison ou pour une autre, c’est l’ensemble du
programme qui s’arrête.

Les sections suivantes indiquent donc quelques problèmes po-
tentiels et la manière d’y remédier pour que le programme POE

continue à bien fonctionner.

Envoyer un message différé

POE::Kernel->delay

Ce point a déjà été abordé dans un exemple (voir page 333),
mais il est bon de le rappeler : la fonction sleep() est à
bannir. Avec delay, la session indique au noyau POE qu’elle
souhaite recevoir un événement après un certain nombre
de secondes. Elle peut aussi s’envoyer des paramètres sup-
plémentaires :

s ’ envoyer un événement différé

dans $sec secondes

POE :: Kernel -> delay (event => $sec , @params) ;

339

i

i

“perl” — 2010/9/30 — 13:10 — page 340 — #356
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

Les machines disposant de Time::HiRes (c’est-à-dire tous
les Perl depuis la version 5.8) peuvent utiliser des frac-
tions de secondes. Cependant, Perl n’est pas un langage
dit temps réel et la précision de l’alarme dépend de beau-
coup de choses, dont le système d’exploitation.

Il n’est pas possible d’envoyer un événement différé à une
autre session. Pour cela, il faut s’envoyer un événement
différé, qui se chargera d’envoyer le message à la deuxième
session :

POE :: Session -> create (

inline_states => {

_start => sub {

POE :: Kernel -> delay (later => 5) ;

},

later => sub {

POE :: Kernel -> post (session => " event ");

},

) ;

Envoyer un message à l’heure
dite

POE::Kernel->alarm

Quand le programme doit se réveiller à une date et une
heure précises, il ne faut plus utiliser delay mais la fonction
alarm.

s ’ envoyer un événement à la date / heure

indiquée par $epoch

POE :: Kernel -> alarm (event => $epoch , @params);

340

i

i

“perl” — 2010/9/30 — 13:10 — page 341 — #357
i

i

i

i

i

i

Couper les longs traitements

La date est fournie au format Epoch3.

Terminer le programme
Pour donner une chance à toutes les sessions de se termi-
ner correctement, il faut bien sûr bannir les appels à exit

ou die. En effet, ces fonctions terminent le programme
d’un seul coup – sans laisser aux sessions un délai de grâce.

Le bon citoyen POE enverra des messages de fin aux di-
verses sessions :

il est temps de s ’ arrêter !

POE :: Kernel -> post ($_ => " shutdown ")

for @sessions ;

Charge à elles de réagir à ce signal en s’arrêtant propre-
ment : fermeture des fichiers et connexions, suppression
des alias de session, arrêt des composants. La session sera
alors passée au ramasse-miettes, et quand il ne restera plus
aucune session, le programme s’arrêtera.

Couper les longs traitements
Certains événements nécessitent un long traitement, par
exemple, en lançant une boucle itérant un grand nombre
de fois.

Mais du fait de sa nature monoprocessus et monothread,
l’ensemble du programme POE va se retrouver bloqué le
temps que le traitement de l’événement se termine. Ceci
peut être inacceptable, car pendant ce temps, aucun évé-
nement n’est acheminé – et donc aucun callback appelé.

3. Nombre de secondes depuis la date initiale (qui dépend du système
d’exploitation, souvent le 1er janvier 1970).

341

i

i

“perl” — 2010/9/30 — 13:10 — page 342 — #358
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

Imaginez une interface graphique avec une telle boucle :
l’utilisateur aura beau cliquer, rien ne se passera. . . jusqu’à
ce que le traitement abusif soit terminé, et alors toutes les
interactions seront traitées d’un coup ! Pire encore, une
application réseau mal codée utilisant un très long callback
pourra bien voir toutes les connexions en cours perdues,
pour cause de réponse trop lente de l’application !

L’exemple suivant calcule la somme de 0 à 1 000 000, tout
en affichant la date et l’heure toutes les secondes. Pour ne
pas perturber l’affichage4, la boucle va être découpée pour
ne faire qu’une itération par événement :

use POE ;

POE :: Session -> create (

inline_states => {

_start => sub {

POE :: Kernel -> yield (" tick ");

POE :: Kernel -> yield (" sum ");

},

tick => sub {

say scalar localtime ;

POE :: Kernel -> delay (tick => 1) ;

},

sum => sub {

state $i = 0;

state $sum = 0;

$sum += $i ++;

if ($i > 1 _000_000) {

affichage du résultat final

say " sum = $sum " ;

4. Cet exemple est naïf, mais imaginez un traitement complexe à chaque
itération. . .

342

i

i

“perl” — 2010/9/30 — 13:10 — page 343 — #359
i

i

i

i

i

i

Couper les longs traitements

arrêt de l ’ horloge

POE :: Kernel -> delay (" tick ");

}

else {

POE :: Kernel -> yield (" sum ") ;

}

},

},

) ;

POE :: Kernel -> run ;

Il y a plusieurs lignes intéressantes dans cet exemple.

Les variables définies avec le mot-clé state gardent leur
valeur d’une invocation du callback à la suivante. Cepen-
dant, si plus d’une session était créée, ces variables seraient
partagées et modifiées par les deux sessions. Ce n’est gé-
néralement pas le but recherché. Pour pallier cet incon-
vénient, il faut alors utiliser la pile qui est, elle, privée à la
session.

Il est aussi intéressant de noter la ligne :

arrêt de l ’ horloge

POE :: Kernel -> delay (" tick ");

L’appel de delay avec seulement le nom de l’événement
va annuler la planification de cet événement déjà réalisée
via un appel à delay.

Malheureusement, même s’il permet de laisser aux autres
événements le temps de s’exécuter, le fait de s’envoyer un
million de messages (un par itération) est très inefficace.
Là où une simple boucle :

perl -E ’$s += $_ for 0..1 _000_000 ; say $s ’

343

i

i

“perl” — 2010/9/30 — 13:10 — page 344 — #360
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

se termine en moins d’une seconde, le programme basé
sur POE ci-dessus met. . . un peu plus d’une minute ! Et
même si l’exemple est vraiment trivial et non représentatif
de ce qui peut se faire dans le monde réel, cela n’en reste
pas moins inacceptable.

L’astuce consiste donc à découper le long traitement non
pas en très fines tranches, mais en tranches assez consé-
quentes pour que le surcoût ne soit pas trop gros, mais
assez fines pour ne pas perturber le flux du programme.
Dans l’exemple pris, les itérations ne se feront donc pas
une par une (trop lent) ou par un million (pas assez réac-
tif), mais mille par mille5. La boucle du programme de-
vient donc :

sum => sub {

state $i = 0;

state $sum = 0;

$sum += ($i > 1 _000_000 ? 0 : $i ++)

for 0..999;

if ($i > 1 _000_000) {

affichage du résultat final

say " sum = $sum ";

arrêt de l ’ horloge

POE :: Kernel -> delay (" tick ") ;

}

else {

POE :: Kernel -> yield (" sum ");

}

},

Et ainsi, le temps d’exécution revient en dessous de la se-
conde. . .

5. Ce chiffre dépend bien sûr du programme et de la complexité de
chaque itération du traitement.

344

i

i

“perl” — 2010/9/30 — 13:10 — page 345 — #361
i

i

i

i

i

i

Bannir les entrées-sorties bloquantes

Attention

Notez le test lors de l’addition : comme la boucle est tronçonnée,
les tranches ne sont peut-être pas un multiple entier de la boucle
totale. Il faut donc s’assurer que cette astuce ne fausse pas le
résultat du programme : mieux vaut un programme lent qu’un
programme faux !

Bannir les entrées-sorties
bloquantes

Un autre point qui peut poser problème dans l’environ-
nement POE concerne les entrées-sorties bloquantes. Pour
éviter que le programme ne s’arrête en attente d’une entrée-
sortie quelconque, il faut s’assurer que les connexions sont
ouvertes en mode non bloquant, ne pas s’arrêter lors de la
lecture des fichiers ou pipes, ne pas bloquer en attente de
données non présentes. . . Heureusement, POE propose des
solutions pour simplifier la tâche du programmeur.

Réutilisation de code

POE n’est pas seulement un framework événementiel éla-
boré, c’est aussi tout un écosystème de modules fournissant
des composants réutilisables facilement dans tout programme
POE.

Ces modules sont répartis en trois grandes catégories, suivant
des degrés d’abstraction variables, et fournissant une balance
différente entre les efforts de développement et le contrôle
qu’aura le développeur sur le comportement de ces modules.

Il est bien sûr possible de mélanger des composants de diffé-

rents niveaux, permettant ainsi une flexibilité accrue.

345

i

i

“perl” — 2010/9/30 — 13:10 — page 346 — #362
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

Composants de haut niveau

POE::Component

Les « composants » (component en anglais) sont puissants
et fournissent des services avancés à peu de frais. Souvent
une ou plusieurs sessions POE distinctes seront créées, qui
dialogueront avec les autres sessions comme un compo-
sant distinct du programme. Ces composants se retrouvent
dans l’espace de noms POE::Component.

Une grande partie d’entre eux propose par exemple des
clients ou des serveurs réseau : accès ou fourniture de ser-
vices web, syslog, résolution de nom sont disponibles di-
rectement, mais aussi les briques nécessaires pour créer son
propre client ou serveur générique. Le programme suivant
implémente un serveur d’echo complet :

use POE ;

use POE :: Component :: Server :: TCP ;

POE :: Component :: Server :: TCP -> new (

Port => 17000 ,

ClientInput => sub {

my ($heap , $input) = @_ [HEAP , ARG0];

$heap - >{ client }-> put ($input);

},

) ;

POE :: Kernel -> run ;

Parmi les autres principaux composants de haut niveau se
trouvent des interfaces à des bibliothèques ou des applica-
tions : libpcap, oggenc, mpd, etc. CPAN regroupe environ
600 composants de haut niveau pour POE.

346

i

i

“perl” — 2010/9/30 — 13:10 — page 347 — #363
i

i

i

i

i

i

Boîte à outils de niveau intermédiaire

Boîte à outils de niveau
intermédiaire

POE::Wheel

Lorsque les « POCO6 » ne sont pas appropriés, ou trop
spécialisés, il faut réutiliser des « roues » standard de plus
bas niveau.

Ces « roues » fournies par les modules de l’espace de noms
POE::Wheel (d’où leur nom) sont plus généralistes. Ce sont
les briques de base de nombreux composants.

Elles ne créent pas de nouvelles sessions, mais ajoutent des
traitements d’événements à la session utilisant la roue –
autrement dit, la session est modifiée. Comme les roues
ne créent pas de session autonome, le noyau POE ne les
stockera pas : c’est à la session qui utilise la roue de la
stocker. . . et de la détruire quand elle ne sert plus (pas
de ramasse-miettes automatique fourni par le noyau). Les
roues sont donc étroitement couplées avec leur session
mère, et ne peuvent être passées ou utilisées par d’autres
sessions : celles-ci doivent créer leur propre instance de la
dite roue.

Parmi les roues disponibles, peuvent être citées la sur-
veillance des lignes d’un fichier (à la tail -f), la gestion
d’entrées-sorties non bloquantes (connexions réseau com-
prises), le lancement et le contrôle de processus, etc.

Leur utilisation implique bien sûr plus d’efforts de pro-
grammation qu’un composant fournissant un service clé
en main, mais c’est le prix à payer pour plus de contrôle.

6. « POCO » comme POE::Component, les composants de haut niveau
vus ci-dessus.

347

i

i

“perl” — 2010/9/30 — 13:10 — page 348 — #364
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

Fonctions de bas niveau POE
Finalement, quand même les roues fournies par POE sont
trop évoluées, POE propose ses propres fonctions de bas
niveau. Le code résultant sera certes moins raffiné et plus
verbeux, mais fournira le contrôle le plus complet aux dé-
veloppeurs.

Les fonctions proposées permettent de gérer les alarmes et
les signaux (au sens Unix du terme) et des interfaces aux
appels système tels que select.

Bien sûr, l’ensemble des fonctionnalités d’orchestration
et de passage de messages fournies par POE restent dispo-
nibles. . .

Astuce

Les différents niveaux des composants POE permettent aux déve-
loppeurs de choisir le degré d’abstraction qu’ils souhaitent mettre
en œuvre dans leur programme. Le nombre de briques de base
disponibles donne la possibilité d’écrire un programme complexe
en assemblant des composants éprouvés, et cela participe aussi
de l’intérêt d’utiliser POE.

Exemple d’utilisation :
le composant DBI

POE::Component::EasyDBI

Voici une illustration du fait que la programmation évé-
nementielle impose de s’habituer à tout penser de manière
asynchrone. L’accès aux bases de données est un exemple
typique de service dont l’API est fondamentalement syn-
chrone, et qui induit donc des temps de latence. Le prin-

348

i

i

“perl” — 2010/9/30 — 13:10 — page 349 — #365
i

i

i

i

i

i

Exemple d’utilisation : le composant DBI

cipe général utilisé pour fournir un composant asynchrone
à de tels services est de déporter la synchronicité dans un
processus séparé avec lequel le composant POE discute au
travers d’un tube et de POE::Wheel::Run.

Il existe quelques composants de pilotage DBI pour POE

sur CPAN, tous fonctionnant sur le même principe gé-
néral : pour chaque connexion à une base de donnée,
le composant crée un nouveau processus qui se charge
d’exécuter les commandes DBI.

Le composant qui va être présenté plus en détails est POE::-
Component::EasyDBI, parce qu’il est un peu plus agréable à
manipuler que les autres, et parce que c’est celui utilisé par
l’un des auteurs. Fondamentalement, tous les composants
d’accès aux bases de données reposent sur le même prin-
cipe de découpage des requêtes en deux événements POE :
le premier pour préparer la requête et passer les éventuels
arguments, et le second pour la réception des résultats.

Il faut d’abord créer une session POE::Component::EasyDBI

qui se charge de la communication avec la base de don-
nées. Les paramètres passés à la méthode spawn() seront
familiers à l’utilisateur averti de DBI :

POE :: Component :: EasyDBI -> spawn (

alias => " events_dbh " ,

dsn => " dbi : mysql : database = events " ,

username => " user " ,

password => " pass " ,

) ;

spawn() accepte bien sûr d’autres options, mais les réglages
par défaut conviennent en général très bien. Le nom de la
session, si aucun alias n’est indiqué, est “EasyDBI”.

EasyDBI propose un grand nombre de commandes, cha-
cune spécialisée dans un usage donné, un peu comme les
nombreuses méthodes de DBI.

349

i

i

“perl” — 2010/9/30 — 13:10 — page 350 — #366
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

La commande insert sert pour exécuter des requêtes IN-
SERT :

sub store_event {

my ($kernel , $host , $service , $id , $msg)

➥ = @_ [KERNEL , ARG0 .. $# _];

my $sql = q{

INSERT INTO events

(host , service , id , message)

VALUES (?, ?, ?, ?)

};

$kernel -> post (

$easydbi ,

insert => {

sql => $sql ,

event => " store_event_result " ,

placeholders

=> [$host , $service , $id , $msg],

},

);

}

Les paramètres sont assez simples à comprendre : sql pour
donner la requête SQL, placeholders pour les éventuelles
valeurs à passer en arguments de la requête et event pour
indiquer le nom de l’événement de la session courante qui
sera appelé pour recevoir les résultats. Celui-ci reçoit une
référence vers un hash qui contient des champs différents
en fonction de la commande exécutée, ainsi que quelques
champs communs à toutes : sql contient la requête SQL
envoyée, placeholders la référence vers les éventuels va-
leurs, result le résultat si la commande a réussi et er-

ror la chaîne d’erreur si elle a au contraire échoué. C’est
d’ailleurs le premier champ à vérifier dans les fonctions de
traitement :

350

i

i

“perl” — 2010/9/30 — 13:10 — page 351 — #367
i

i

i

i

i

i

Exemple d’utilisation : le composant DBI

sub store_event_result {

my ($kernel , $db_result)

➥ = @_ [KERNEL , ARG0];

warn " store_event : $db_result - >{ error }\ n "

if $db_result - >{ error };

}

La commande do sert pour la plupart des requêtes SQL
hors SELECT, comme UPDATE, DELETE, etc.

sub delete_event {

my ($kernel , $host , $service , $id , $msg)

➥ = @_ [KERNEL , ARG0 .. $# _];

my $sql = q{

DELETE

FROM events

WHERE host = ?

AND service = ?

AND id = ?

};

$kernel -> post (

$easy_dbi ,

array => {

sql => $sql ,

event => " delete_event_result " ,

placeholders

=> [$host , $service , $id],

},

);

}

sub delete_event_result {

my ($kernel , $db_result) =

➥ @_ [KERNEL , ARG0];

warn " delete_event : $db_result - >{ error }\ n"

if $db_result - >{ error };

}

351

i

i

“perl” — 2010/9/30 — 13:10 — page 352 — #368
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

Plusieurs commandes existent pour les requêtes SELECT,
de manière similaire aux différentes méthodes de DBI,
pour récupérer les données sous des formes et des struc-
tures variées : single pour une valeur unique (comme
fetchrow_array()), hash pour un ligne de plusieurs co-
lonnes nommées (fetchrow_hashref()), array pour plu-
sieurs lignes d’une colonne (avec jointure de colonnes si
nécessaire), arrayarray pour plusieurs lignes de plusieurs
colonnes (fetchall_arrayref()), hashhash pour plusieurs
lignes de plusieurs colonnes nommées (comme fetchall_

hashref()), arrayhash pour plusieurs lignes colonnes nom-
mées (mais sous la forme d’un tableau de fetchrow_hash-

ref()).

Voici un exemple qui récupère une simple valeur :

sub fetch_event {

my ($kernel , $host) = @_ [KERNEL , ARG0];

my $sql = q{

SELECT count (*)

FROM events

WHERE host = ?

};

$kernel -> post (

$easydbi ,

single => {

sql => $sql ,

event => " fetch_event_result " ,

placeholders => [$host],

},

);

}

sub fetch_event_result {

my ($kernel , $db_result)

➥ = @_ [KERNEL , ARG0];

352

i

i

“perl” — 2010/9/30 — 13:10 — page 353 — #369
i

i

i

i

i

i

Exemple d’utilisation : le composant DBI

if ($db_result - >{ error }) {

warn " fetch_event : $db_result - >{ error }

➥ \n ";

return ;

}

print $db_result - >{ result },

" événements associés à l ’ hôte " ,

" $placeholders - >[0]\ n";

}

Et un exemple qui récupère les résultats sous forme d’un
tableau de structures :

sub find_events {

my ($kernel , $host) = @_ [KERNEL , ARG0];

my $sql = q{

SELECT *

FROM events

WHERE host like ?

};

$kernel -> post (

$easydbi ,

arrayhash => {

sql => $sql ,

event => " find_events_result " ,

placeholders => [$host],

},

);

}

sub find_events_result {

my ($kernel , $db_result)

= @_ [KERNEL , ARG0];

if ($db_result - >{ error }) {

warn " find_events : $db_result - >{ error }

➥ \n ";

return ;

}

353

i

i

“perl” — 2010/9/30 — 13:10 — page 354 — #370
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

for my $event (@ { $db_result - >{ result }}) {

print " traitement de l ’ événement pour / " ,

$event - >{ host }, " /" ,

$event - >{ service }, " /" ,

$event - >{ id }, " \n" ;

$kernel -> yield (" process_event " ,

➥ $event);

}

}

POE::Component::EasyDBI permet de passer des données
supplémentaires aux événements traitant les résultats : il
suffit d’ajouter les champs correspondants dans le hash
passé à la commande EasyDBI, qui se retrouveront dans
le hash fournit en résultat. De manière assez évidente, il
vaut donc mieux utiliser des noms de champs qui soient
propres, par exemple en les préfixant par des doubles es-
paces soulignées.

Petit exemple pour mesurer la latence au niveau base de
données :

sub store_event {

my ($kernel , $host , $service , $id , $msg)

➥ = @_ [KERNEL , ARG0 .. $# _];

my $now_ms = gettimeofday () ;

my $sql = q{

INSERT INTO events

(host , service , id , message)

VALUES (?, ?, ?, ?)

};

$kernel -> post (

$easydbi ,

insert => {

sql => $sql ,

event => " store_event_result " ,

__start_time => $now_ms ,

354

i

i

“perl” — 2010/9/30 — 13:10 — page 355 — #371
i

i

i

i

i

i

Exemple d’utilisation : le composant DBI

placeholders

=> [$host , $service , $id , $msg],

},

);

}

sub store_event_result {

my ($kernel , $db_result)

➥ = @_ [KERNEL , ARG0];

warn " store_event : $db_result - >{ error }\ n "

if $db_result - >{ error };

my $now_ms = gettimeofday () ;

printf " La requête SQL a mis %.2 f sec \n" ,

➥ $now_ms - $db_result - >{ __start_time };

}

Bien sûr, POE::Component::EasyDBI n’a pas été présenté en
profondeur ici, mais l’important était de signaler son exis-
tence, et l’intérêt qu’il y a à utiliser ce genre de compo-
sants. Il est clair qu’il induit un surcoût non négligeable
en termes de nombre de fonctions ou événements POE

à écrire, puisque pratiquement chaque requête SQL im-
plique deux événements. Néanmoins, le gain que cela ap-
porte en termes de bande passante d’exécution au niveau
du noyau POE est très sensible et en justifie le coût.

Intégration à Moose

Il est possible de reprocher à POE sa verbosité, en parti-

culier lors de l’emploi d’une pile. Heureusement, le module

MooseX::POE permet de marier élégamment POE avec tous

les avantages de Moose. L’exemple rencontré auparavant mon-

trant comment avoir des variables privées peut donc se réécrire

de la sorte :

355

i

i

“perl” — 2010/9/30 — 13:10 — page 356 — #372
i

i

i

i

i

i

CHAPITRE 18 POE en pratique

package Counter ;

use MooseX :: POE ;

attribut propre à chaque session

has count => (

is => " rw " ,

isa => " Int " ,

required => 1

);

sub START {

my $self = shift ;

$self -> yield (" next ");

}

event next => sub {

my $self = shift ;

my $i = $self -> count ;

say $i ;

$self -> count ($i -1) ;

$self -> yield (" next ")

unless $i == 0;

};

Counter -> new (count = >3) ;

Counter -> new (count = >1) ;

POE :: Kernel -> run ;

Chaque session sera définie dans une classe, et créée en ins-
tanciant cette classe. La méthode START sera automatique-
ment appelée lors du démarrage de la session, après la créa-
tion de l’objet lui-même. Les événements seront définis avec le
mot-clé event prenant en compte deux paramètres : le nom
de l’événement et le callback associé. Bien sûr, tous les avan-
tages de POE (définition d’attributs, vérifications diverses, etc.)
se retrouvent dans MooseX::POE, avec en plus quelques mé-
thodes d’aide telles que yield(), faisant exactement la même
chose que la méthode du noyau du même nom.

L’utilisation de la notation objet avec MooseX::POE permet

donc d’avoir un code plus épuré, plus lisible. . . et donc plus

maintenable.

356

i

i

“perl” — 2010/9/30 — 13:10 — page 357 — #373
i

i

i

i

i

i

19
POE distribué

Bien que les avantages de POE soient nombreux, son pro-
blème principal découle de l’un d’entre eux, à savoir sa
nature monoprocessus et monothreadée. En effet, si ce
mode de fonctionnement aide énormément l’écriture de
tout programme, il ne facilite pas le passage à l’échelle.
Les performances seront donc limitées à la puissance brute
d’un seul processeur ; ajouter des cœurs ou d’autres pro-
cesseurs ne rendra pas le programme plus rapide. . .

Pour pallier ce problème, le composant1 POE IKC (Inter
Kernel Communication) permet à plusieurs programmes POE
de se passer des messages et des événements comme s’ils
étaient orchestrés par le même noyau POE.

Les avantages sont évidents : faire tourner plusieurs pro-
grammes permet au système d’exploitation de les orches-
trer sur autant de processeurs et de cœurs que disponibles.
Mieux même, IKC permet de faire communiquer de ma-
nière transparente des programmes POE sur différentes ma-
chines, à travers le réseau !

1. Au sens « POCO ».

i

i

“perl” — 2010/9/30 — 13:10 — page 358 — #374
i

i

i

i

i

i

CHAPITRE 19 POE distribué

Créer un serveur IKC

use POE::Component::IKC::Server

L’illustration d’un serveur IKC se fait en reprenant l’exem-
ple du logger, mais qui sera cette fois disponible en tant
que service. Il tournera dans un serveur distinct, accessible
sur le port 17000 :

use POE ;

use POE :: Component :: IKC :: Server ;

création du serveur IKC

POE :: Component :: IKC :: Server -> spawn (

name => " my_server " ,

ip => " localhost " ,

port => 17000 ,

) ;

POE :: Session -> create (

inline_states => {

_start => sub {

POE :: Kernel -> alias_set (" logger ");

POE :: Kernel -> post (IKC

=> publish

=> logger

=> [" debug "]

) ;

},

debug => sub {

my @args = @_ [ARG0 .. $# _];

say @args ;

},

},

) ;

POE :: Kernel -> run ;

358

i

i

“perl” — 2010/9/30 — 13:10 — page 359 — #375
i

i

i

i

i

i

Créer un client IKC

Le programme va donc lancer un composant serveur IKC
(avec la méthode POE::Component::IKC::Server->spawn),
en lui donnant un nom, ainsi que les paramètres réseau
sur lesquels écouter. Une session va alors être créée.

Lors de son démarrage, cette session va prendre un alias ;
mais surtout elle va s’enregistrer auprès de IKC en listant
la session et les événements qui seront accessibles par les
clients du service. Cela se fait en envoyant le message pu-

blish à la session IKC.

La nouvelle session définit aussi l’événement debug, celui-
là même qui est publié auprès de IKC. Comme dans
l’exemple précédent, il ne fait qu’afficher les paramètres
qui lui sont passés – mais il pourrait faire beaucoup plus. . .

Créer un client IKC
use POE::Component::IKC::Client

Le client n’est pas tellement plus compliqué :

use POE ;

use POE :: Component :: IKC :: Client ;

use POE :: Component :: IKC :: Responder ;

POE :: Component :: IKC :: Responder -> spawn ;

POE :: Component :: IKC :: Client -> spawn (

ip => " localhost " ,

port => 17000 ,

name => " my_client " ,

on_connect => sub {

POE :: Session -> create (

inline_states => {

359

i

i

“perl” — 2010/9/30 — 13:10 — page 360 — #376
i

i

i

i

i

i

CHAPITRE 19 POE distribué

_start => sub {

POE :: Kernel -> yield (" tick ") ;

},

tick => sub {

POE :: Kernel -> post (IKC

=> post

=> " poe :// my_server / logger / debug "

=> scalar localtime

);

POE :: Kernel -> delay (tick => 1) ;

},

},

);

},

) ;

POE :: Kernel -> run ;

Un composant Responder est créé (sans paramètre), il sera
utilisé en interne par IKC qui en a besoin pour discuter
avec le serveur. La création du client IKC lui-même se
fait ainsi :

POE :: Component :: IKC :: Client -> spawn (% params);

Outre les paramètres réseau permettant de joindre le ser-
veur, le client va prendre un nom et un callback. Ce call-
back sera appelé lorsque la connexion au serveur est effec-
tive. En effet, il n’est pas judicieux de vouloir utiliser le
serveur tant qu’il n’est pas disponible. . .

Le callback va ici simplement créer une nouvelle session.
Celle-ci va à nouveau s’envoyer des événements toutes
les secondes, qui seront traités en utilisant le service debug

proposé par le serveur. Cela se réalise en envoyant l’évé-
nement post à la session IKC, qui utilisera le premier pa-

360

i

i

“perl” — 2010/9/30 — 13:10 — page 361 — #377
i

i

i

i

i

i

Créer un client IKC

ramètre pour savoir à quel serveur, session et événement
envoyer le message.

La syntaxe pour décrire l’événement ciblé est :

poe :// $server / $session / $event

En effet, il est tout à fait possible de se connecter à plu-
sieurs serveurs IKC (un par service), ou qu’un serveur
accepte plusieurs événements destinés à plusieurs sessions
différentes.

IKC se chargera en interne de toute la communication
réseau, sérialisera et désérialisera (avec Data::Dumper) au-
tomatiquement les données.

Attention

Un point important sur la sécurité : un utilisateur du service peut
passer n’importe quoi à la session serveur, qui le désérialisera
dans un eval : cela peut impliquer de l’exécution de code pour
un client malveillant. . .

Aller plus loin

Cette introduction ne fait qu’effleurer le sujet de POE distribué.
Beaucoup de choses peuvent être faites en utilisant IKC. Pour
en citer quelques-unes :

● Passage d’événements retour : avec ou sans RSVP (retour dif-
féré dans le temps). Cela permet de créer ou utiliser des pro-
tocoles de type RPC, synchrones ou asynchrones.

● Communication peer to peer : avec un noyau IKC serveur sur
lequel se connectent plusieurs client IKC de type « esclave »
(worker). Les tâches sont ensuite planifiées par le serveur qui
les distribue et collecte ensuite les résultats.

361

i

i

“perl” — 2010/9/30 — 13:10 — page 362 — #378
i

i

i

i

i

i

CHAPITRE 19 POE distribué

● Surveillance intégrée des noyaux distants : IKC fournit les
moyens techniques pour suivre lorsqu’un noyau se décon-
necte ou se (re-)connecte suite à une pertubation réseau (ou
autres événements).

Bref, IKC permet le passage à l’échelle de POE, tant en termes
de meilleure utilisation des performances que de modularisa-
tion des programmes. Vitesse et robustesse accrues, pour une
maintenance facilitée : tels sont les avantages qu’IKC apporte
à POE.

362

i

i

“perl” — 2010/9/30 — 13:10 — page 363 — #379
i

i

i

i

i

i

Partie
VI–

W
eb

20
Analyse de

documents HTML

Cette partie présente les moyens d’interagir en Perl avec
le World Wide Web. Exactement comme un utilisateur aux
commandes de son navigateur web, sauf que dans le cas
présent, le client web (le « navigateur ») sera écrit en Perl.

Info

Le Web est la combinaison de trois éléments importants : le for-
mat HTML pour encoder les documents, le protocole HTTP pour
les transférer et les URI pour les localiser. À partir d’une URI, un
client saura à quel serveur demander le document correspondant,
et utilisera HTML (si le document est encodé ainsi) pour l’analyser
et pouvoir l’afficher.

Il existe de nombreuses manières d’analyser un document
HTML. Ce chapitre présente très rapidement une ap-
proche simple mais déconseillée, avant de proposer trois
modules qui permettent une analyse correcte du format
HTML. Ces modules seront présentés en partant de ce-
lui de plus bas niveau, qui sert de base aux suivants. Les
exemples utilisés seront les mêmes, afin de pouvoir com-
parer les différences entre les modules.

i

i

“perl” — 2010/9/30 — 13:10 — page 364 — #380
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

Analyser avec les expressions
régulières

m{(.*?)}i

À première vue, un document HTML, c’est avant tout
du texte. Et Perl dispose d’un outil surpuissant pour l’ana-
lyse de texte : les expressions régulières. Pourtant, n’analysez
jamais des documents HTML avec des expressions régu-
lières !

Utiliser des expressions régulières semble simple et rapide,
mais (en dehors de scripts jetables qui ne seront jamais
réutilisés), cette approche n’aura aucune pérennité à long
terme.

Voici quelques-uns des inconvénients de l’utilisation des
regexp dans le cadre de l’analyse de documents HTML :

● Fragilité. Il suffit qu’un caractère change dans le docu-
ment à analyser pour que l’expression ne corresponde
plus et renvoie n’importe quoi (ou rien du tout).

● Inadaptation. Elles ne sont pas adaptées à l’analyse
d’éléments imbriqués (par exemple des listes de listes,
avec un niveau arbitraire d’imbrication).

● Mauvaise représentation. HTML est un format qui
représente des données structurées en arbre. Il y a une
infinité de manières de représenter un contenu iden-
tique sémantiquement.

Les expressions régulières ne sont pas adaptées à la recon-
naissance de données arborescentes, car elles analysent le
texte à un très bas niveau : il faut tenir compte des blancs,
des sauts de ligne, des guillemets simple ou double, des
commentaires HTML, autant de choses qui peuvent va-

364

i

i

“perl” — 2010/9/30 — 13:10 — page 365 — #381
i

i

i

i

i

i

Instancier un analyseur HTML::Parser

rier dans un document source, sans pour autant en changer
la signification.

Utiliser l’analyseur événementiel
HTML::Parser

La plupart des modules d’analyse HTML sont basés sur
HTML::Parser. Ce module n’est pas un analyseur SGML
générique (mais qui se souvient qu’HTML est défini en
SGML1 ?) ; il est capable d’analyser le HTML tel qu’il
existe sur le Web, tout en disposant d’options permettant
de respecter les spécifications du W3C (World-Wide Web
Consortium) si cela est souhaité.

HTML::Parser est un analyseur HTML événementiel : l’ana-
lyse se fait à partir d’un flux de données, c’est-à-dire que
le document pourra être reçu sous forme de morceaux de
taille arbitraire par l’analyseur, et au fur et à mesure de
l’analyse du document, des événements (voir page 369)
sont déclenchés, et pris en charge par des fonctions de
rappel (callback).

Instancier un analyseur
HTML::Parser

HTML::Parser->new(. . .)

De manière classique, un analyseur HTML::Parser est un
objet qui est créé grâce au constructeur new du module
HTML::Parser.

1. SGML est un système permettant de définir des types de documents
structurés et des langages de balisage pour représenter les instances de ces
types de documents.

365

i

i

“perl” — 2010/9/30 — 13:10 — page 366 — #382
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

use HTML :: Parser ;

my $p = HTML :: Parser -> new (api_version => 3) ;

Lors de l’appel à new() ci-dessus, l’argument api_version
=> 3 a été passé. Par défaut, un nouvel objet HTML::Parser
est créé en utilisant la version 2 de l’API du module, qui
suppose l’utilisation de noms de gestionnaires et de spéci-
fications d’arguments prédéfinis. La version 3 de l’API est
donc beaucoup plus souple.

La classe HTML::Parser est sous-classable. Les objets sont
de simples tables de hachage, et HTML::Parser se réserve
uniquement les clés commençant par _hparser. Cela per-
met d’utiliser l’objet HTML::Parser pour y stocker les états
nécessaires au cours de l’analyse.

Créer un gestionnaire
d’événements

$p->handler(. . .)

Les gestionnaires d’événement sont déclarés avec la mé-
thode handler() :

$p -> handler (event => \& handler , $argspec);

Dans l’exemple de code ci-dessus, event est le nom de
l’événement à traiter, \&handler est une référence à la
fonction codant le gestionnaire (il est également possible
de donner simplement un nom de méthode) et $argspec
est une chaîne de caractères représentant la spécification
des arguments attendus par le gestionnaire (handler() ac-
cepte également d’autres arguments : la documentation du
module en présente la liste complète).

366

i

i

“perl” — 2010/9/30 — 13:10 — page 367 — #383
i

i

i

i

i

i

Créer un gestionnaire d’événements

Il est aussi possible de définir les gestionnaires lors de l’ini-
tialisation de l’analyseur, à l’aide de clés composées du
nom de l’événement à traiter et du suffixe _h (handler).

$p = HTML :: Parser -> new (

api_version => 3,

event_h => [\& handler , $argspec]

) ;

La valeur associée est une référence à un tableau conte-
nant les mêmes paramètres que lors de l’appel à handler()
(hormis le nom de l’événement).

HTML::Parser offre une grande souplesse pour la défini-
tion des gestionnaires d’événements : lors de leur décla-
ration (ce sont en général des fonctions spécifiques), il est
possible de définir précisément quels paramètres ils vont
recevoir.

Voici la liste des principaux paramètres (voir la documen-
tation de HTML::Parser pour une liste complète) :

● self : référence à l’objet HTML::Parser ;

● attr : référence à une table de hachage des clés/valeurs
des attributs ;

● tagname : le nom de la balise ;

● text : texte source (y compris les éléments de balisage) ;

● dtext : texte décodé (é sera transformé en « é »).

Voici un exemple qui montre la création d’un gestion-
naire avec un événement. Pour la liste complète des évé-
nements disponibles, voir pages 370 et suivantes. Pour le
détail sur la méthode parse, voir page 368.

use HTML :: Parser ;

my $p = HTML :: Parser -> new (api_version => 3) ;

$p -> handler (

start => \& handler , " tagname , text "

) ;

367

i

i

“perl” — 2010/9/30 — 13:10 — page 368 — #384
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

sub handler {

my ($tagname , $text) = @_ ;

say " détection de la balise $tagname " ;

say " le source HTML : $text " ;

}

$p -> parse (" <html >< body > Hello </ body >

➥ </ html >");

Cet exemple produira sur la console :

détection de la balise html

le source HTML : <html>

détection de la balise body

le source HTML : <body>

Lancer l’analyse HTML

$p->parse(. . .)

$p->parse_file(. . .)

Une fois les gestionnaires définis, il reste à lancer l’analyse,
au moyen d’une des méthodes suivantes :

● $p->parse($string) : analyse le morceau suivant du
document HTML. Les gestionnaires sont appelés au fur
et à mesure. Cette fonction doit être appelée à répéti-
tion tant qu’il reste des données à analyser.

● $p->parse($coderef) : il est également possible d’ap-
peler parse() avec une référence de code, auquel cas
cette routine sera appelée à répétition pour obtenir le
prochain morceau de document à analyser. L’analyse se
termine quand la référence de code renvoie une chaîne
vide ou la valeur undef.

368

i

i

“perl” — 2010/9/30 — 13:10 — page 369 — #385
i

i

i

i

i

i

Détecter un nouveau document

● $p->parse_file($file) : réalise l’analyse directement
depuis un fichier. Le paramètre peut être un nom de
fichier, un handle de fichier ouvert, ou une référence à
un handle de fichier ouvert.

Si l’un des gestionnaires d’événement interrompt l’ana-
lyse par un appel à eof() avant la fin du fichier, alors
parse_file() pourra ne pas avoir lu l’intégralité du fi-
chier.

Terminer l’analyse du contenu

$p->eof()

Une fois toutes les données envoyées à l’analyseur, il est
très important de signaler la fin de fichier, à l’aide de $p-

>eof(). Si l’un des gestionnaires termine prématurément
l’analyse en appelant directement $p->eof(), la méthode
parse() renvoie une valeur fausse. Dans le cas contraire,
parse() renvoie une référence à l’analyseur lui-même, qui
est une valeur vraie.

Détecter un nouveau document
start_document

Cet événement est déclenché avant tous les autres pour un
nouveau document. Son gestionnaire pourra être utilisé à
des fins d’initialisation. Il n’y a aucun texte du document
associé à cet événement.

369

i

i

“perl” — 2010/9/30 — 13:10 — page 370 — #386
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

my $p = HTML :: Parser -> new (api_version => 3) ;

$p -> handler (

start => sub { say " début du document " },

) ;

Info

HTML::Parser gère neuf types d’événements, qui sont déclen-
chés dans différents cas.

Détecter une balise
declaration

Cet événement est déclenché quand une déclaration de
balisage (markup declaration) est rencontrée. Dans la plupart
des documents HTML, la seule déclaration sera <!DOCTYPE
. . .>.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN">

Détecter un commentaire
comment

Cet événement est déclenché quand un commentaire HTML
est détecté.

use HTML :: Parser ;

370

i

i

“perl” — 2010/9/30 — 13:10 — page 371 — #387
i

i

i

i

i

i

Détecter du texte brut

my $p = HTML :: Parser -> new (api_version => 3) ;

$p -> handler (

comment => sub { say shift }, " tagname "

) ;

$p -> parse (

" <!-- ceci est un commentaire HTML -->"

) ;

Détecter un début de balise
start

Cet événement est déclenché lorsqu’une balise de début
est reconnue.

use HTML :: Parser ;

my $p = HTML :: Parser -> new (api_version => 3) ;

$p -> handler (

start => sub { say shift }, " tagname "

) ;

$p -> parse (

’ ’

) ;

Détecter du texte brut
text

Cet événement est déclenché lorsque du texte brut (des
caractères) est détecté. Le texte peut contenir plusieurs
lignes.

371

i

i

“perl” — 2010/9/30 — 13:10 — page 372 — #388
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

Une séquence de texte peut être découpée entre plu-
sieurs événements text (sauf si l’option unbroken_text de
l’analyseur est activée). Cependant, l’analyseur fait tout de
même attention à ne pas couper un mot ou une série de
blancs entre deux événements text.

use HTML :: Parser ;

my $p = HTML :: Parser -> new (api_version => 3) ;

$p -> handler (

text => sub { say shift }, " text "

) ;

$p -> parse (’ <body > Du texte </ body > ’);

Détecter la fin d’une balise
end

Cet événement est déclenché lorsqu’une balise de fin est
reconnue, comme par exemple .

Détecter la fin du document
end_document

Cet événement est déclenché lors de la fin du document.
Il n’y a aucun texte du document associé à cet événement.

Détecter des instructions
de traitement

process

372

i

i

“perl” — 2010/9/30 — 13:10 — page 373 — #389
i

i

i

i

i

i

Extraire du texte d’un document

Cet événement est déclenché lorsque des instructions de
traitement (processing instructions) sont détectées. L’un des
rares cas où cet événement sert est quand le document
est du XHTML, qui contiendra au moins la balise <?xml

version="1.0”?>

Capturer les autres événements

default

Cet événement est déclenché pour les événements qui
n’ont pas de gestionnaire spécifique.

Extraire du texte d’un document
L’exemple suivant extrait le texte d’un document HTML.
Le gestionnaire associé à l’événement text reçoit le para-
mètre dtext et en affiche directement le contenu.

use HTML :: Parser ;

création de l ’ analyseur

my $p = HTML :: Parser -> new (api_version => 3) ;

$p -> handler (

text => sub { print $_ [0] }, " dtext "

) ;

analyse du document

$p -> parse ("");

$p -> eof ;

Cet analyseur est un peu naïf : d’une part, tous les blancs
(espaces et sauts de lignes) seront affichés tels quels ; d’autre
part, le contenu des blocs <script> et <style> sera égale-
ment affiché.

373

i

i

“perl” — 2010/9/30 — 13:10 — page 374 — #390
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

Pour ignorer ces blocs, il faut configurer l’analyseur avec
la méthode ignore_elements() :

$p -> ignore_elements (qw (script style));

Pour supprimer les blancs inutiles, il faut modifier le ges-
tionnaire :

sub { $_ [0] =~ s /\ s +/ /g ; print " $_ [0] "; }

On pourra également minimiser le nombre d’événements
text reçus en configurant l’analyseur avec :

$p -> unbroken_text ;

Produire une table des matières
HTML est un format structuré, qui permet de définir des
niveaux de titres dans un document (les balises h1, h2, jus-
qu’à h6). Cet exemple utilise les titres du document pour
produire une table des matières.

définition de l ’ analyseur

use HTML :: Parser ;

my $p = HTML :: Parser -> new (

api_version => 3,

start_h => [\& start , " self , tagname "],

end_h => [\& end , " self , tagname "],

text_h => [\& text , " self , dtext "],

) ;

gestionnaires d ’ événements

sub start { my ($self , $tagname) = @_ ;

$tagname =~ /^ h (\ d +) $/

and $self - >{ level } = $1 ;

}

374

i

i

“perl” — 2010/9/30 — 13:10 — page 375 — #391
i

i

i

i

i

i

Produire une table des matières

sub end { my ($self , $tagname) = @_ ;

if ($tagname =~ /^ h (\ d +) $/) {

my ($level , $text)

= delete @{ $self }{ qw (level text) };

$text =~ s /\ s +/ / g;

$text =~ s /^\ s +|\ s+$ // g ;

say " " x ($level - 1) , $text ;

}

}

sub text { my ($self , $text) = @_ ;

$self - >{ level }

and $self - >{ text } .= " " . $text ;

}

analyse du document

$p -> parse ($_) while <>;

$p -> eof ;

Info

Cet exemple est à stocker dans un fichier, ici outline.pl. Pour
l’exécuter, il faut lui passer un nom de fichier HTML en paramètre.
Il peut également s’utiliser en sortie de pipe sous unix.

perl ./outline.pl fichier.html

Dans cet exemple, le travail est réparti entre trois gestion-
naires :

● start : se contente de tenir à jour le niveau de titre en
cours (level).

● text : dans le cas où un niveau de titre est défini (level
est vrai), concatène le texte décodé (argument dtext)
dans la clé text.

● end : à la fermeture d’une balise de titre, affiche le texte
accumulé jusque là, en éliminant les blancs surnumé-
raires.

375

i

i

“perl” — 2010/9/30 — 13:10 — page 376 — #392
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

Ce code s’appuie en particulier sur le fait qu’il ne peut y
avoir de balises de titre imbriquées en HTML. Un docu-
ment HTML invalide (par exemple <h1>Titre 1<h2>Titre

2</h2></h1>) provoquera des avertissements.

Voici ce que produit le programme sur le manuel de Gnu-
plot :

$ lwp-request http://www.gnuplot.info/docs/gnuplot.html |

./outline.pl

Contents

Part I Gnuplot

1 Copyright

2 Introduction

3 Seeking-assistance

4 New features introduced in version 4.4

4.1 Internationalization

4.2 Transparency

4.3 Volatile Data

4.4 Canvas size

...

On constate en passant que cette documentation n’a pas
de titres de niveau 2 et saute directement du niveau 1 au
niveau 3.

Analyseur par token

L’analyse événementielle n’est pas toujours la plus intuitive.
HTML::TokeParser est un analyseur par token, utilisable dans
une programmation impérative. Les éléments analysés sont
fournis par une méthode qui sera appelée à répétition, jusqu’à
épuisement des données.

Le traitement ne se fait plus sur un flux, mais sur le docu-

ment en entier. Il faut donc fournir un fichier, un descripteur

de fichier ou une référence au texte complet du document au

constructeur.

376

i

i

“perl” — 2010/9/30 — 13:10 — page 377 — #393
i

i

i

i

i

i

Créer une instance HTML::TokeParser

Créer une instance
HTML::TokeParser

HTML::TokeParser->new()

Il y a plusieurs moyens d’initialiser HTML::TokeParser, et
de créer un objet. L’extrait de code suivant présente les
trois méthodes principales, à partir d’un fichier HTML,
d’un descripteur de fichier, ou directement à partir d’une
chaîne de caractères ($html).

use HTML :: TokeParser ;

nom de fichier

my $p = HTML :: TokeParser -> new (

$file , % options);

descripteur de fichier

open my $fh , ’ <: utf8 ’, ’ index . html ’

or die " Erreur sur ’ $file ’ : $! ";

my $p = HTML :: TokeParser -> new (

$fh , % options);

référence vers le texte du document

my $p = HTML :: TokeParser - >(

\ $html , % options);

Info

HTML::TokeParser est en réalité basé sur HTML::Parser en in-
terne. C’est pourquoi les options éventuelles, sous forme d’une
liste de clés-valeurs, sont les même que celles de HTML::Parser.
Elles sont utilisées pour configurer l’analyseur HTML interne à
HTML::TokeParser.

377

i

i

“perl” — 2010/9/30 — 13:10 — page 378 — #394
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

Récupérer des tokens

get_token

La principale méthode de HTML::TokeParser est get_token,
qui renvoie le token suivant sous forme d’une référence
de tableau. Le premier élément du tableau est une chaîne
représentant le type de l’élément, et les paramètres suivants
dépendent du type.

L’utilisation de get_token est très simple, il suffit de bou-
cler :

use HTML :: TokeParser ;

use Data :: Dumper ;

my $html = ’< html >< body > </ body > </ html > ’;

my $p = HTML :: TokeParser - >(\ $html);

while (my $token = $p -> get_token ()) {

say Dumper ($token);

}

Il y a six types de token, chacun ayant différents para-
mètres associés :

● Début de tag (S) :

[" S" , $tag , $attr , $attrseq , $text]

● Fin de tag (E) :

[" E" , $tag , $text]

● Texte (T) :

[" T" , $text , $is_data]

378

i

i

“perl” — 2010/9/30 — 13:10 — page 379 — #395
i

i

i

i

i

i

Obtenir des balises

● Commentaire (C) :

[" C" , $text]

● Déclaration (D) :

[" D" , $text]

● Instruction de traitement (PI) :

[" PI " , $token0 , $text]

La signification des tokens est la même que pour HTML::-
Parser (voir page 369).

HTML::TokeParser n’a pas de méthodes pour filtrer les ba-
lises, mais fournit plusieurs méthodes de plus haut niveau.

Obtenir des balises
get_tag(@tags)

Cette fonction renvoie la prochaine balise de début ou de
fin, en ignorant les autres tokens, ou undef s’il n’y a plus
de balises dans le document. Si un ou plusieurs argument
sont fournis, les tokens sont ignorés jusqu’à ce que l’une
des balises spécifiées soit trouvée.

Ce code trouvera la prochaine balise d’ouverture ou de
fermeture de paragraphe :

$p -> get_tag ("p " , "/p ") ;

Le résultat est renvoyé sous la même forme que pour
get_token(), avec le code de type en moins. Le nom des
balises de fin est préfixé par un /.

379

i

i

“perl” — 2010/9/30 — 13:10 — page 380 — #396
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

Une balise de début sera renvoyée comme ceci :

[$tag , $attr , $attrseq , $text]

Et une balise de fin comme cela :

["/ $tag " , $text]

Obtenir du texte
get_text(@endtags)

Cette fonction renvoie tout le texte trouvé à la position
courante. Si le token suivant n’est pas du texte, renvoie
une chaîne vide. Toutes les entités HTML sont converties
vers les caractères correspondants.

Si un ou plusieurs paramètres sont fournis, alors tout le
texte apparaissant avant la première des balises spécifiées
est renvoyé.

Certaines balises peuvent être converties en texte (par
exemple la balise , grâce à son paramètre alt). Le
comportement de l’analyseur est contrôlé par l’attribut
textify, qui est une référence à un hash définissant com-
ment certaines balises peuvent être converties. Chaque clé
du hash définit une balise à convertir. La valeur associée
est le nom du paramètre dont la valeur sera utilisée pour la
conversion (par exemple, le paramètre alt pour la balise
img). Si le paramètre est manquant, le nom de la balise en
capitales entre crochets sera utilisé (par exemple [IMG]). La
valeur peut également être une référence de code, auquel
cas la fonction recevra en paramètre le contenu du to-
ken de début de balise, et la valeur de retour sera utilisée
comme du texte.

380

i

i

“perl” — 2010/9/30 — 13:10 — page 381 — #397
i

i

i

i

i

i

Extraire le texte d’un document avec HTML::Parser

Par défaut textify est défini comme :

{ img => ’ alt ’, applet => ’ alt ’ }

Obtenir du texte nettoyé

get_trimmed_text(@endtags)

Cette fonction opère comme get_text() mais remplace
les blancs multiples par une seule espace. Les blancs en
début et fin de chaîne sont également supprimés.

Extraire le texte d’un document
avec HTML::Parser

Info

Dans les exemples qui suivent, l’analyseur lit le fichier donné sur
la ligne de commande.

Les exemples sont les mêmes que dans les sections consacrées à
HTML::Parser, afin de faciliter la comparaison entre les diffé-
rents modules.

Voici une version naïve :

use HTML :: TokeParser ;

my $p = HTML :: TokeParser -> new (shift) ;

print $p -> get_trimmed_text ("/ html ");

Cette version a un petit défaut : le contenu des balises
<script> et <style> est considéré comme du texte, et le
code JavaScript ou CSS sera donc inclus dans le « texte »
du document.

381

i

i

“perl” — 2010/9/30 — 13:10 — page 382 — #398
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

La version qui suit lit le texte du document jusqu’à ren-
contrer l’une des balises en question, saute à la balise de
fin, et recommence jusqu’à épuisement du document :

use HTML :: TokeParser ;

my $p = HTML :: TokeParser -> new (shift) ;

boucle sur la recherche de texte

my @skip = qw (script style);

while (defined (

my $t = $p -> get_trimmed_text (@skip)

)) {

affiche le texte obtenu

print $t ;

saute à la balise de fin ou termine

la lecture s ’il n ’y en a pas

$p -> get_tag (qw (/ style / script)) or last ;

}

Produire une table des matières
avec HTML::Parser

Ici, seul le texte à l’intérieur des balises <h1> à <h6> doit
être affiché. Les paramètres optionnels des méthodes
get_tag() et get_text() seront bien utiles :

use HTML :: TokeParser ;

my $p = HTML :: TokeParser -> new (shift) ;

définition de la liste des balises

my @start = qw (h1 h2 h3 h4 h5 h6);

my @end = map { "/ $_ " } @start ;

382

i

i

“perl” — 2010/9/30 — 13:10 — page 383 — #399
i

i

i

i

i

i

Analyse par arbre avec HTML::TreeBuilder

boucle de recherche des débuts de titre

while (my $token = $p -> get_tag (@start)) {

calcul du niveau de titre

my ($level) = $token - >[0] =~ /h (\ d) /;

texte jusqu ’à la fin de titre

my $text = $p -> get_trimmed_text (@end) ;

affiche le texte , avec indentation

print " " x ($level - 1) , $text , " \n"

if $text ;

}

Analyse par arbre avec
HTML::TreeBuilder

Comme on l’a vu, HTML définit une structure arbores-
cente. Les analyseurs présentés jusqu’ici n’utilisaient pas
cet aspect fondamental, se contentant d’événements dé-
clenchés ou de tokens détectés au fil de la lecture du do-
cument.

HTML::TreeBuilder est un module qui hérite de HTML::-

Parser pour construire une structure de données en arbre.
HTML::TreeBuilder hérite également de HTML::Element.
L’objet HTML::TreeBuilder est à la fois analyseur HTML
et nœud racine d’un arbre composé d’autres objets de la
classe HTML::Element.

Les méthodes issues de HTML::Parser sont utilisées pour
construire l’arbre HTML, et celles issues de HTML::Element
sont utilisées pour inspecter l’arbre.

(La page de manuel HTML::Tree pointe vers plusieurs pages
de manuels et articles permettant de mieux comprendre la
documentation de HTML::TreeBuilder et HTML::Element.)

383

i

i

“perl” — 2010/9/30 — 13:10 — page 384 — #400
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

Astuce

Il faut noter que le HTML est en général beaucoup plus difficile
à analyser que ceux qui l’écrivent ne le croient. Les auteurs de
HTML::TreeBuilder ont pris soin, pour produire une représen-
tation arborescente correcte (cela n’est pas nécessaire quand on
se contente de déclencher des événements ou produire un flux
de tokens), de gérer un certain nombre de cas particuliers comme
les éléments et balises de fin implicites.

Un exemple permet de mieux comprendre le problème, et la solu-
tion apportée par HTML::TreeBuilder. Soit le document HTML
(complet !) :

item

Le code suivant analyse le document et produit une sortie HTML
correspondant à l’arbre construit (en ajoutant les balises impli-
cites, telles que <html>, <head>, etc.) :

print HTML :: TreeBuilder -> new_from_content

(< >) -> as_HTML ;

Le résultat est :

<html><head></head><body>item </body></html>

La sortie « XML » (en utilisant la méthode as_XML()) ajoute les
balises de fin implicites qui manquaient :

<html><head></head><body>item

</body></html>

Créer un arbre
HTML::TreeBuilder->new_from_file(..)

HTML::TreeBuilder->new_from_content(..)

La création de l’arbre se fait à partir du document HTML
en utilisant l’une des méthodes suivantes :

384

i

i

“perl” — 2010/9/30 — 13:10 — page 385 — #401
i

i

i

i

i

i

Rechercher un élément

● new_from_file($file)

● new_from_content(@args)

Ces méthodes sont des raccourcis qui combinent la cons-
truction d’un nouvel objet, et l’appel à la méthode parse_

file() (ou parse(), à répétition sur chacun des éléments
de @args) de HTML::Parser.

Ces deux méthodes ne permettent pas de définir des op-
tions sur l’analyseur avant l’analyse proprement dite.

Une fois l’analyseur créé avec new() (et éventuellement
configuré en utilisant les méthodes héritées de HTML::-

Parser), il est également possible d’utiliser directement les
méthodes parse_file() et parse() de HTML::Parser.

La structure arborescente issue de l’analyse du HTML est
relativement lourde en mémoire, et regorge de références
circulaires (chaque nœud enfant pointe vers son parent,
et réciproquement). Pour effacer proprement la structure
de données, il est donc impératif d’utiliser la méthode de-

lete() sur l’objet racine.

Rechercher un élément
$tree->look_down(. . .)

Pour des programmes consacrés à l’analyse d’une page
web pour en extraire les données utiles, la seule méthode
vraiment indispensable à connaître est look_down(), qui
cherche à partir de l’invoquant les éléments enfants qui
correspondent aux critères de recherche. En contexte de
liste, look_down() renvoie tous les éléments qui corres-
pondent aux critères, et en contexte scalaire, seulement le
premier élément (ou undef).

385

i

i

“perl” — 2010/9/30 — 13:10 — page 386 — #402
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

Info

Le module HTML::Element dispose d’une API très riche, avec
de nombreuses méthodes consacrées au fonctionnement de base
(création d’éléments, manipulation des balises et de leurs attri-
buts), à la modification de la structure (ajout, insertion, détache-
ment ou suppression d’éléments, clonage d’objets), au formatage
et à l’affichage (déboggage, conversion en HTML (propre), XML,
texte), et enfin à la structure elle-même (parcours de l’arbre ; re-
cherche à partir d’un nœud ; obtention d’éléments structurels tels
que le parent, les ancêtres, les descendants d’un nœud ; compa-
raisons d’éléments).

La forme générale d’appel est :

$elem -> look_down (@criteres);

où $elem est un objet HTML::Element, et les critères conte-
nus dans @criteres sont de trois types :

● (attr_name, attr_value) : cherche les éléments ayant
la valeur souhaitée pour l’attribut indiqué. Il faut noter
qu’il est possible d’utiliser des attributs internes, tel _tag.

● (attr_name, qr/. . ./) : cherche les éléments dont la
valeur correspond à l’expression régulière fournie pour
l’attribut indiqué.

● un coderef : cherche les éléments pour lesquels $code-
ref->($element) renvoie vrai.

La liste de critères est évaluée dans l’ordre. Il faut savoir
que les deux premiers types de critères sont presque tou-
jours plus rapides que l’appel à un coderef, aussi il est in-
téressant de placer les coderefs en fin de liste.

Le code suivant va rechercher les images dont le texte
alternatif indique qu’il s’agit de photos et dont la largeur
(l’attribut HTML de la balise , pas la largeur réelle
du fichier image) est supérieure à 400 pixels.

386

i

i

“perl” — 2010/9/30 — 13:10 — page 387 — #403
i

i

i

i

i

i

Produire une table des matières avec HTML::TreeBuilder

@photos = $elem -> look_down (

_tag => " img " ,

alt => qr / photo /i ,

sub { $_ [0] - > attr (’ width ’) >= 400 },

) ;

HTML::TreeBuilder est donc un module de très haut ni-
veau pour analyser et manipuler un document HTML.
Les exemples codés avec HTML::Parser et HTML::TokeParser
vont s’en trouver considérablement réduits.

Extraire du texte d’un document
avec HTML::TreeBuilder

use HTML :: TreeBuilder ;

my $root = HTML :: TreeBuilder -> new () ;

$root -> parse ($_) while <>;

$root -> eof () ;

print $root -> as_trimmed_text ;

$root -> delete () ;

Difficile de faire plus court. . .

Produire une table des matières
avec HTML::TreeBuilder

use HTML :: TreeBuilder ;

my $root = HTML :: TreeBuilder -> new () ;

$root -> parse ($_) while <>;

$root -> eof () ;

my @elems = $root -> look_down (

_tag => qr /^ h [1 -6] $ /) ;

387

i

i

“perl” — 2010/9/30 — 13:10 — page 388 — #404
i

i

i

i

i

i

CHAPITRE 20 Analyse de documents HTML

for my $elem (@elems) {

my $level = substr ($elem -> tag , -1, 1) ;

print " " x ($level - 1) ,

$elem -> as_trimmed_text , "\n ";

}

$root -> delete () ;

Extraire le titre d’un document
avec HTML::TreeBuilder

use HTML :: TreeBuilder ;

my $root = HTML :: TreeBuilder -> new () ;

$root -> parse ($_) while <>;

$root -> eof () ;

print $_ -> as_trimmed_text , "\n "

for $root -> look_down (_tag => " title ") ;

$root -> delete () ;

Astuce

Dans cet exemple, la boucle for permet de ne pas traiter le cas où
il n’y a pas de balise <title> comme un cas particulier. Puisqu’il
y a au plus une balise <title> dans un document HTML, il est
possible d’utiliser look_down() en contexte scalaire et d’écrire :

print $root -> look_down (_tag => ’ title ’) ->

as_trimmed_text , " \n" ;

En contexte scalaire, look_down() va renvoyer undef en l’ab-
sence de balise <title>, ce qui impose de gérer ce cas particulier,
sous peine de voir le programme s’interrompre avec le message
d’erreur :
Can’t call method “as_trimmed_text” on an undefined

value.

388

i

i

“perl” — 2010/9/30 — 13:10 — page 389 — #405
i

i

i

i

i

i

21
HTTP et le Web

HTTP, le protocole de transfert à la base du Web est de-
venu omniprésent. Parce qu’il est le seul protocole dont
il est quasi certain qu’il passera à travers les proxies et les
firewalls, celui-ci est utilisé comme protocole de transport
générique pour tous les usages. Non seulement pour le
« transport de documents hypertexte » (HTTP signifie
Hyper-Text Transport Protocol), mais aussi pour encapsuler
des échanges entre applications ou des appels de procé-
dures distantes (web services, SOAP, XML-RPC, etc.)

La maîtrise du protocole HTTP est donc indispensable
pour un programme qui sera amené à faire des échanges
avec le monde extérieur.

La bibliothèque libwww-perl a été écrite en 1994 pour Perl 4
par Roy Fielding, l’un des principaux auteurs de la spé-
cification HTTP et membre fondateur de la fondation
Apache. La version pour Perl 5 (orientée objet) a été écrite
par Gisle Aas, et est connue sous le nom de LWP. C’est elle
(et les modules qui la composent et s’appuient dessus) qui
sera décrite dans ce chapitre et le suivant.

Ce chapitre présente ce qui se passe lorsque qu’un navi-
gateur se connecte à un serveur web, et met les différents
éléments décrit en relation avec la bibliothèque Perl cor-
respondante.

i

i

“perl” — 2010/9/30 — 13:10 — page 390 — #406
i

i

i

i

i

i

CHAPITRE 21 HTTP et le Web

Adresses
http://www.perdu.com:80/index.html

Tout commence par une adresse Internet, autrement dit
une URL1 (ou URI2). Cette URI peut être découpée en
plusieurs éléments :

● http:// (scheme) : le protocole à utiliser (ici HTTP).
Les URI servant à décrire des adresses plus générales,
il existe des URI associées à d’autres protocoles (FTP,
IRC, etc.).

● www.perdu.com (host) : l’adresse du serveur au sens du
DNS.

● :80 (port : le port (TCP) sur lequel écoute le serveur
web. Celui est optionnel, et s’il est omis, la valeur par
défaut 80 est utilisée.

● /index.html (path) : le chemin du document sur le ser-
veur.

En Perl, la bibliothèque de gestion des URI s’appelle tout
simplement URI. Voici un exemple d’utilisation :

use URI ;

while (< >) {

chomp ;

my $uri = URI -> new ($_) ;

say join " \n" ,

map { " $_ :\ t" . $uri -> $_ }

qw (scheme host port path) ;

}

1. Uniform Resource Locator.

2. Uniform Resource Identifier.

390

i

i

“perl” — 2010/9/30 — 13:10 — page 391 — #407
i

i

i

i

i

i

Messages

Ce code donnera le résultat suivant quand il reçoit l’URL
précédente sur l’entrée standard :

scheme: http

host: www.perdu.com

port: 80

path: /index.html

La classe URI fournit de nombreuses méthodes pour mani-
puler les URI, et dispose de sous-classes adaptées aux di-
vers schemes. Ainsi, dans l’exemple précédent, l’objet $uri
renvoyé par URI->new() était de classe URI::http.

Messages
Équipé de l’adresse du document à télécharger, le client va
se charger de l’obtenir auprès du serveur. Il établit donc
une connexion au port indiqué et va dialoguer avec le ser-
veur en utilisant le protocole HTTP. HTTP est un proto-
cole à base de messages. Les messages envoyés par le client
sont appelés « requêtes », et les messages envoyés par le
serveur sont appelés « réponses ».

Dans les premières versions d’HTTP, la connexion TCP
servait à échanger une seule requête et une seule réponse.
Ce genre d’inefficacité a été corrigé par la suite (en HTTP
/1.1, les connexions TCP entre client et serveur peuvent
être persistantes et transporter plusieurs couples requête-
réponse). Mais le principe reste le même et il n’y a pas
vraiment d’échange : le client envoie l’intégralité de la re-
quête, et ensuite seulement le serveur envoie l’intégralité
de la réponse3.

3. Du point de vue du serveur, deux requêtes successives sur la même
connexion TCP peuvent venir de clients différents. HTTP permet en
effet l’utilisation de serveurs mandataires (proxies), et une requête peut
donc transiter de façon automatique à travers un ou plusieurs intermé-
diaires (parfois à l’insu du client, par exemple dans le cas où un proxy
transparent intercepte la connexion TCP du client).

391

i

i

“perl” — 2010/9/30 — 13:10 — page 392 — #408
i

i

i

i

i

i

CHAPITRE 21 HTTP et le Web

Les messages HTTP sont divisés en trois parties :

● La ligne de statut. C’est la première ligne du message.

Pour une requête, elle contient la méthode, ses para-
mètres, et la version du protocole reconnue par le client.

Pour une réponse, la ligne de statut contient un code
d’erreur, un message en texte clair, et la version du pro-
tocole reconnue par le serveur.

● Les en-têtes. Les en-têtes se présentent sous la forme
d’une liste de clés/valeurs séparées par le caractère :. Ce
format est similaire à celui des en-têtes d’un courriel.

● Le corps. Le corps (optionnel) du message est séparé
des en-têtes par une ligne vide.

Certaines requêtes n’ont pas de corps de message, par
définition. C’est le cas des requêtes utilisant les mé-
thodes GET et HEAD, par exemple. D’autres ont un
corps de message, comme les requêtes POST.

Dans LWP, la classe HTTP::Message représente les messages.
Les en-têtes peuvent être manipulés via la classe HTTP::-

Headers.

Requêtes

GET / HTTP/1.1

L’observation de ce qui se passe sur le réseau, avec un outil
comme Wireshark, montre que le client envoie ceci :

GET /index.html HTTP/1.1

Host: www.perdu.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; fr;

rv:1.9.2.3) Gecko/20100423 Ubuntu/10.04 (lucid)

Firefox/3.6.3

392

i

i

“perl” — 2010/9/30 — 13:10 — page 393 — #409
i

i

i

i

i

i

Réponses

Accept: text/html,application/xhtml+xml,application/xml;

q=0.9,*/*;q=0.8

Accept-Language: fr-fr,fr;q=0.8,en-gb;q=0.5,en;q=0.3

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 115

Connection: keep-alive

Il s’agit d’une requête GET qui, par définition, n’a pas de
corps de message.

La classe HTTP::Request de LWP hérite de HTTP::Message.

Réponses

HTTP/1.1 200 OK

Voici à quoi ressemble la réponse envoyée par le serveur :

HTTP/1.1 200 OK

Date: Tue, 01 Jun 2010 21:19:50 GMT

Server: Apache

Last-Modified: Tue, 02 Mar 2010 18:52:21 GMT

Etag: "4bee144-cc-dd98a340"

Accept-Ranges: bytes

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 163

Keep-Alive: timeout=2, max=100

Connection: Keep-Alive

Content-Type: text/html

<163 octets de données compressée>

Le passage des données compressées contenues dans le
corps du message à travers gunzip fait apparaître le corps
du message, ici le source HTML de la page :

393

i

i

“perl” — 2010/9/30 — 13:10 — page 394 — #410
i

i

i

i

i

i

CHAPITRE 21 HTTP et le Web

<html>

<head>

<title>Vous Etes Perdu ?</title>

</head>

<body>

<h1>Perdu sur l’Internet ?</h1>

<h2>Pas de panique, on va vous aider</h2>

<pre> * <----- vous êtes ici</pre>

</body>

</html>

C’est le navigateur qui se charge du rendu de ce docu-
ment.

La classe HTTP::Response de LWP hérite de HTTP::Message.

394

i

i

“perl” — 2010/9/30 — 13:10 — page 395 — #411
i

i

i

i

i

i

22
LWP

LWP est une bibliothèque très riche (plus de 50 modules), et
ce chapitre ne fait que montrer les principaux modules et
méthodes disponibles pour réaliser une navigation simple.

Utiliser LWP::Simple
Pour les utilisateurs ayant des besoins très limités, ou dé-
sirant écrire des unilignes jetables, la bibliothèque LWP::-

Simple fournit une vue simplifiée de libwww-perl, en ex-
portant quelques fonctions réalisant des tâches courantes.

Il n’est pas nécessaire de créer un objet URI, LWP::Simple
s’en chargera, en appelant URI-new() avec la chaîne de ca-
ractères fournie en paramètre.

Faire une requête GET sur
une URL

get($url)

Comme son nom l’indique, get() fait une requête GET
sur l’URL fournie en paramètre, et renvoie le contenu de
la réponse associée.

i

i

“perl” — 2010/9/30 — 13:10 — page 396 — #412
i

i

i

i

i

i

CHAPITRE 22 LWP

L’URL est une simple chaîne de caractères :

use LWP :: Simple ;

$content = get (shift) ;

La fonction getprint() affiche le contenu de la réponse
associée à l’URL fournie et renvoie le code HTTP de la
réponse,

Enregistrer le contenu
de la réponse

getstore($url => $fichier)

Cette fonction enregistre le contenu de la réponse associée
à l’URL fournie dans le fichier spécifié et renvoie le code
HTTP de la réponse.

Faire une requête HEAD sur
une URL

head($url)

Lorsqu’un programme n’a pas besoin du corps de la ré-
ponse, il est inutile (et coûteux au niveau réseau) de le
télécharger pour le jeter ensuite. La méthode HEAD permet
de demander à un serveur web de faire le même traite-
ment qu’il aurait effectuer avec une requête GET, mais
de ne renvoyer que les en-têtes de la réponse.

En contexte de liste, la fonction head() renvoie quelques
valeurs utiles issues de la réponse, ou la liste vide en cas
d’échec :

396

i

i

“perl” — 2010/9/30 — 13:10 — page 397 — #413
i

i

i

i

i

i

Créer un agent LWP::UserAgent

my ($content_type , $document_length ,

➥ $modified_time , $expires , $server)

➥ = head ($url);

En contexte scalaire, head() renvoie une valeur vraie (en
fait, l’objet HTTP::Response) en cas de succès.

Cela peut servir par exemple à tester une liste de liens pour
filtrer les liens morts :

use LWP :: Simple ;

for my $url (@url) {

say $url if head ($url) ;

}

Utiliser LWP::UserAgent
Dès que le programme nécessite plus de contrôle sur les
requêtes et les réponses (par exemple pour manipuler les
en-têtes), il est nécessaire de passer par la classe principale
de la bibliothèque LWP : LWP::UserAgent.

LWP::UserAgent implémente un navigateur complet, qui
sait manipuler les objets requêtes et réponses présentés
page 391 et permet de contrôler dans les moindres détails
les requêtes envoyées.

Créer un agent LWP::UserAgent

LWP::UserAgent->new(. . .)

La méthode new() permet de créer un nouvel objet LWP::-
UserAgent. Celle-ci prend une liste de paires clé/valeur en
paramètres, pour configurer l’état initial du navigateur.

397

i

i

“perl” — 2010/9/30 — 13:10 — page 398 — #414
i

i

i

i

i

i

CHAPITRE 22 LWP

my $ua = LWP :: UserAgent -> new (% options);

Parmi les clés importantes, il faut retenir :

● agent : permet de définir la valeur de l’en-tête User-

Agent.

● cookie_jar : définit un objet HTTP::Cookies qui sera uti-
lisé pour conserver les cookies envoyés par les serveurs
web.

● env_proxy : demande la définition des proxies à partir
des variables d’environnement.

● keep_alive : si elle est vraie, cette option crée un cache
de connexions (LWP::ConnCache), la valeur associée dé-
finit la capacité maximale du cache de connexions. Le
cache de connexion permet au client d’utiliser le mode
keep-alive de HTTP 1.1, et d’économiser les connexions
TCP.

● show_progress : si elle vraie, une barre de progression
sera affichée sur le terminal au fur et à mesure du trai-
tement des requêtes.

Ces options peuvent également être définies en appelant
les méthodes correspondantes sur un objet LWP::UserAgent
directement.

Gérer les réponses

HTTP::Response

Les méthodes qui envoient des requêtes HTTP à un ser-
veur web vont renvoyer des objets HTTP::Response en re-
tour. Le programme va pouvoir utiliser les attributs de cet

398

i

i

“perl” — 2010/9/30 — 13:10 — page 399 — #415
i

i

i

i

i

i

Faire une requête GET sur une URL avec LWP::UserAgent

objet HTTP::Reponse pour interagir avec l’utilisateur ou le
serveur web.

En tant que sous-classe de HTTP::Message, HTTP::Reponse,
comme HTTP::Request, dispose en particulier des méthodes
suivantes :

● headers() : renvoie l’objet HTTP::Headers qui repré-
sente les en-têtes du message.

● content() : renvoie le contenu brut du corps du mes-
sage.

● decoded_content() : renvoie le contenu décodé du corps
du message, en utilisant le jeu de caractères défini dans
le message.

Les principaux attributs d’un objet HTTP::Response sont :

● code : le code de la réponse (200, 301, etc.) ;

● message : le message textuel associé au code de la ré-
ponse ;

● status_line : la ligne de statut de la réponse (c’est-à-
dire la chaîne “<code> <message>“).

Faire une requête GET sur
une URL avec LWP::UserAgent

$ua->get($url);

Pour les requêtes HTTP qui n’ont pas de corps de message
(GET et HEAD, par exemple), les méthodes de LWP::-

UserAgent peuvent se contenter d’une URI, et ajouteront
les en-têtes par défaut. Ici aussi pour l’URI, une chaîne de
caractères suffit ; la bibliothèque créera l’objet URI néces-
saire de façon transparente.

399

i

i

“perl” — 2010/9/30 — 13:10 — page 400 — #416
i

i

i

i

i

i

CHAPITRE 22 LWP

Cette méthode effectue donc une requête GET à partir
de l’URI fournie. La valeur renvoyée est un objet HTTP::-
Response.

use LWP :: UserAgent ;

my $response

➥ = LWP :: UserAgent -> new () -> get ($url) ;

print $response -> is_success

? $response -> decoded_content

: $response -> status_line ;

Un objet HTTP::Response est renvoyé dans tous les cas,
y compris quand LWP ne peut se connecter au serveur.
(Une réponse d’erreur générée par LWP aura la valeur
Internal response pour l’en-tête Client-Warning.)

Il est possible d’ajouter des en-têtes aux en-têtes par dé-
faut, en faisant suivre l’URL d’une liste de paires clé/va-
leur.

my $response = $ua -> get ($url ,

➥ User_Agent => ’ Mozilla /3.14159 ’);

Enregistrer le contenu
de la réponse

:content_file

Lors de l’appel à get(), les clés qui commencent par :

sont spéciales et ne seront pas interprétées comme des en-
têtes à ajouter à la requête. Parmi les clés spéciales recon-
nues, :content_file permet d’indiquer un nom de fichier
dans lequel sauver le corps de la réponse. Dans le cas où
la réponse n’est pas un succès (code 2xx), le corps de la

400

i

i

“perl” — 2010/9/30 — 13:10 — page 401 — #417
i

i

i

i

i

i

Faire une requête HEAD sur une URL avec LWP::UserAgent

réponse sera toujours sauvé dans l’objet HTTP::Response.
L’équivalent de :

use LWP :: Simple ;

getstore ($url , $filename) ;

sera donc :

use LWP :: UserAgent ;

my $ua = LWP :: UserAgent -> new () ;

$ua -> get ($url ,

➥ ’: content_file ’ => $filename);

Faire une requête HEAD sur
une URL avec LWP::UserAgent

$ua->head($url);

Exactement comme get(), head() va créer une requête
HEAD à partir de l’URL fournie, et va renvoyer l’objet
HTTP::Response correspondant.

Un programme de test de lien pourra fournir un peu plus
d’informations sur l’état des liens (ici, le code HTTP de la
réponse) :

use LWP :: UserAgent ;

my $ua = LWP :: UserAgent -> new () ;

for my $url (@url) {

my $response = $ua -> head ($url);

say $reponse -> code , ’ ’ , $url ;

}

401

i

i

“perl” — 2010/9/30 — 13:10 — page 402 — #418
i

i

i

i

i

i

CHAPITRE 22 LWP

Faire une requête POST sur
une URL avec LWP::UserAgent

$ua->post($url, . . .);

Les requêtes POST sont des messages avec un corps. Elles
servent typiquement lors de la validation de formulaires
HTML, et lors de l’envoi de fichiers.

Cette méthode prend toujours l’URL comme premier pa-
ramètre. Celle-ci et les paramètres qui suivent sont passés
à la fonction POST HTTP::Request::Common, à laquelle est
déléguée la création de l’objet HTTP::Request représentant
la requête POST.

En plus des paires clé/valeur permettant de définir des en-
têtes spécifiques, elle accepte une référence de tableau ou
de hash pour définir le contenu d’un formulaire web.

Le code suivant :

$ua -> post (

’ http :// www . example . com / submit . cgi ’ ,

[couleur => ’ rouge ’ ,

fruit => ’ banane ’,

nombre => 3

]

) ;

produira la requête suivante :

POST http://www.example.com/submit.cgi

Content-Length: 35

Content-Type: application/x-www-form-urlencoded

couleur=rouge&fruit=banane&nombre=3

Le résultat sera identique avec une référence de hash.

402

i

i

“perl” — 2010/9/30 — 13:10 — page 403 — #419
i

i

i

i

i

i

Différences entre LWP::UserAgent et un « vrai » navigateur

Envoyer des requêtes

$ua->request($request);

Les méthodes get(), head() et post() décrites précédem-
ment sont en fait des « raccourcis » pour la méthode gé-
nérale d’envoi de requêtes request(). Celle-ci prend en
premier paramètre un objet HTTP::Request, que les rac-
courcis créaient à partir des paramètres fournis.

Une autre méthode générale existe, simple_request(). À
la différence de request(), elle ne suit pas automatique-
ment les redirections, et sera donc susceptible de renvoyer
un objet HTTP::Response avec un code 3xx.

Différences entre LWP::UserAgent
et un « vrai » navigateur
L’URL http://www.perdu.com/ a déjà servi d’exemple,
page 389. Le code ci-dessous affiche le texte de la requête
envoyée par LWP::UserAgent et celui de la réponse reçue.

use LWP :: UserAgent ;

my $ua = LWP :: UserAgent -> new () ;

my $uri = URI -> new (

shift // " http :// www . perdu . com / "

) ;

la requête

my $req = HTTP :: Request -> new (GET => $uri);

say $req -> as_string ;

la réponse

my $res = $ua -> request ($req);

say $res -> as_string ;

403

i

i

“perl” — 2010/9/30 — 13:10 — page 404 — #420
i

i

i

i

i

i

CHAPITRE 22 LWP

Ce code affiche le résultat suivant :

GET http://www.perdu.com/index.html

HTTP/1.1 200 OK

Connection: close

Date: Fri, 04 Jun 2010 22:56:04 GMT

Accept-Ranges: bytes

ETag: "4bee144-cc-dd98a340"

Server: Apache

Vary: Accept-Encoding

Content-Length: 204

Content-Type: text/html

Last-Modified: Tue, 02 Mar 2010 18:52:21 GMT

Client-Date: Fri, 04 Jun 2010 22:56:04 GMT

Client-Peer: 208.97.189.107:80

Client-Response-Num: 1

Title: Vous Etes Perdu ?

X-Pad: avoid browser bug

<html><head><title>Vous Etes Perdu ?</title></head>

<body><h1>Perdu sur l’Internet ?</h1><h2>

Pas de panique, on va vous aider</h2><pre>

* <----- vous êtes ici</pre>

</body></html>

La première différence notable avec la réponse qui a été
envoyée à un navigateur « normal » (voir page 393), c’est
que le corps de la réponse n’est pas compressé. Mais il y a
d’autres différences. . .

La capture du trafic réseau permet de voir la requête que
LWP::UserAgent a effectivement envoyé :

GET /index.html HTTP/1.1

TE: deflate,gzip;q=0.3

Connection: TE, close

Host: www.perdu.com

User-Agent: libwww-perl/5.834

404

i

i

“perl” — 2010/9/30 — 13:10 — page 405 — #421
i

i

i

i

i

i

Différences entre LWP::UserAgent et un « vrai » navigateur

Celle-ci est remarquablement plus courte que celle de Fi-
refox (voir page 392). Les différences entre les deux re-
quêtes expliquent les différences entre les réponses. Par
exemple, en envoyant l’en-tête Accept-Encoding, Firefox
signale qu’il accepte un certain nombre d’encodages pour
la réponse. La réponse du serveur contenait l’en-tête
Content-Encoding: gzip qui indiquait que le corps (et le
corps seulement) de celle-ci était encodé avec gzip. L’utilisa-
tion de la compression permet d’économiser de la bande
passante, quand client et serveur peuvent s’entendre sur
l’encodage.

Tant qu’à scruter le réseau, voici également les en-têtes de
la réponse telle qu’elle a circulé :

HTTP/1.1 200 OK

Date: Fri, 04 Jun 2010 22:56:04 GMT

Server: Apache

Last-Modified: Tue, 02 Mar 2010 18:52:21 GMT

ETag: "4bee144-cc-dd98a340"

Accept-Ranges: bytes

Content-Length: 204

Vary: Accept-Encoding

Connection: close

Content-Type: text/html

X-Pad: avoid browser bug

Les en-têtes suivants n’ont pas été envoyés par le serveur !

Client-Date: Fri, 04 Jun 2010 22:56:04 GMT

Client-Peer: 208.97.189.107:80

Client-Response-Num: 1

Title: Vous Etes Perdu ?

Ces en-têtes ont été ajoutés par LWP : les en-têtes Client-
fournissent quelques informations supplémentaires sur
l’échange, et l’en-tête Title a été obtenu en lisant le bloc
<head> du contenu de la réponse HTML.

405

i

i

“perl” — 2010/9/30 — 13:10 — page 406 — #422
i

i

i

i

i

i

CHAPITRE 22 LWP

Un point important à retenir de cet exemple, et à garder
à l’esprit lors du déboggage d’un programme, c’est qu’une
URI ne suffit pas pour connaître la réponse exacte qui
sera envoyée. Celle-ci dépend également des en-têtes de
la requête. Et un navigateur courant peut envoyer beaucoup
d’en-têtes, qui seront interprétés par le serveur et influe-
ront sur le contenu de la réponse.

406

i

i

“perl” — 2010/9/30 — 13:10 — page 407 — #423
i

i

i

i

i

i

23
Navigation

complexe

Écrire un robot pour naviguer sur le Web n’a pas pour
objectif de récupérer une simple page. Il s’agit en général
de rejouer une navigation plus ou moins complexe, pour
mettre à jour des données ou télécharger des fichiers.

La complexité peut prendre plusieurs formes, dont les plus
courantes sont décrites dans ce chapitre.

Traiter les erreurs
$response->is_success()

Les réponses HTTP sont séparées en cinq différentes classes.
Le premier des trois chiffres du code de la réponse indique
sa classe. HTTP::Response dispose de méthodes booléennes
qui permettent de savoir si une réponse appartient à une
classe donnée. Les différentes classes sont :

● 1xx : Information : requête reçue, le traitement conti-
nue.

$response -> is_info

i

i

“perl” — 2010/9/30 — 13:10 — page 408 — #424
i

i

i

i

i

i

CHAPITRE 23 Navigation complexe

● 2xx : Succès : l’action requise a été reçue, comprise et
acceptée avec succès.

$response -> is_success

● 3xx : Redirection : une action supplémentaire doit être
effectuée pour compléter la requête.

$response -> is_redirect

● 4xx : Erreur du client : la requête a une syntaxe incor-
recte ou ne peut être effectuée.

$response -> is_error

● 5xx : Erreur du serveur : le serveur a été incapable de
répondre à une requête apparemment correcte.

$response -> is_error

(La méthode est la même pour les erreurs client et les
erreurs serveur.)

Cela permet de tester de façon générique le résultat d’une
requête, sans regarder le détail de la réponse.

Authentifier
$ua->credentials(. . .)

L’accès à certains documents peut être limité à un petit
nombre d’utilisateurs, et protégé par le mécanisme d’au-
thentification inclus dans le protocole HTTP.

Lorsqu’une ressource est protégée par mot de passe, le ser-
veur renvoie une réponse d’erreur (401 Authentication

required). Il est possible de laisser LWP::UserAgent gérer

408

i

i

“perl” — 2010/9/30 — 13:10 — page 409 — #425
i

i

i

i

i

i

Authentifier

l’authentification directement, en l’informant des codes
d’authentification liés à un site et aux domaines associés
(realm en anglais).

Les informations d’authentifications (nom d’utilisateur et
mot de passe) sont associées à l’emplacement réseau (la
chaîne “host:port“) et au domaine d’authentification (le
realm dans le jargon HTTP).

Le programme suivant teste la fonction sur le site http://

diveintomark.org/tests/client/http/ qui contient toute
une batterie de tests pour les clients HTTP :

use LWP ;

my $url = ’ http :// diveintomark . org / tests / ’

. ’ client / http /200 _basic_auth . xml ’;

my $ua = LWP :: UserAgent -> new () ;

$ua -> credentials (

’ diveintomark . org :80 ’ => ’ Use test / basic ’ ,

’ test ’ => ’ basic ’

) ;

my $response = $ua -> get ($url);

say $response -> status_line ;

Si l’appel à credentials() est commenté, le programme
affiche :

401 Authorization Required

sinon, il affiche :

200 OK

LWP::UserAgent supporte les méthodes d’authentification
Basic, Digest et NTLM.

409

i

i

“perl” — 2010/9/30 — 13:10 — page 410 — #426
i

i

i

i

i

i

CHAPITRE 23 Navigation complexe

Gérer les cookies
HTTP::Cookies

Les cookies sont un moyen d’associer un état (en fait une
chaîne de caractères, qui sera décodée par le serveur web)
à un site et un chemin dans le site. Certains sites utilisent
des cookies pour maintenir une session utilisateur, aussi une
navigation enchaînant plusieurs requêtes peut donc néces-
siter de maintenir les cookies entre les requêtes, afin que le
serveur soit en mesure d’associer celles-ci au même « uti-
lisateur ».

Normalement, le serveur web crée le cookie en envoyant
un en-tête Set-Cookie: ou Set-Cookie2: avec sa réponse.
Le client envoie les cookies qu’il possède avec l’en-tête
Cookie:.

La classe HTTP::Cookies sert à manipuler un cookie jar (une
« boîte à gâteaux »), qui sera utilisé par l’objet LWP::-

UserAgent pour analyser les en-têtes de réponse modifiant
les cookies, et mettre à jour les en-têtes associés dans les
requêtes.

Il est possible d’initialiser le navigateur avec un cookie jar
vide, comme ceci :

my $ua = LWP :: UserAgent -> new (

cookie_jar => {}

) ;

HTTP::Cookies permet de sauvegarder automatiquement
puis de relire les cookies depuis un fichier :

use HTTP :: Cookies ;

my $cookie_jar = HTTP :: Cookies -> new (

file => " $ENV { HOME }/ cookies . dat " ,

autosave => 1,

) ;

410

i

i

“perl” — 2010/9/30 — 13:10 — page 411 — #427
i

i

i

i

i

i

Créer un objet HTML::Form

Il est ensuite possible d’utiliser ce cookie jar :

$ua -> cookie_jar ($cookie_jar);

Grâce au paramètre autosave, les cookies seront automa-
tiquement enregistrés lors de la destruction de l’instance
de HTTP::Cookies.

Créer un objet HTML::Form

HTML::Form->parse(. . .)

La méthode de classe parse() analyse un document HTML
et construit des objets HTML::Form pour chacun des élé-
ments <form> trouvés dans le document. En contexte sca-
laire, elle renvoie le premier formulaire.

Formulaires

L’un des intérêts de l’utilisation de LWP est l’automatisation de
tâches fastidieuses nécessitant un navigateur web. Il devient
possible d’ajouter une interface scriptable au-dessus d’un ba-
nal site web.

Nombre de tâches consistent à remplir un formulaire avec des
données diverses. Si ces données peuvent être obtenues par
un programme, il est particulièrement utile de permettre à ce
programme de remplir le formulaire lui-même.

Le module HTML::Form permet de produire des objets de type

formulaire à partir de source HTML, et de remplir ces formu-

laires. Leur validation renverra un objet requête qui pourra être

utilisé afin d’obtenir une réponse.

411

i

i

“perl” — 2010/9/30 — 13:10 — page 412 — #428
i

i

i

i

i

i

CHAPITRE 23 Navigation complexe

La méthode dump() renvoie une version texte de l’état du
formulaire, ce qui peut être utile lors du développement
d’un robot.

Le script suivant affiche le formulaire contenu dans une
page web fournie en paramètre.

use LWP ;

use HTML :: Form ;

say my $url = shift ;

my $response

➥= LWP :: UserAgent -> new () -> get ($url);

die $response -> status_line

if ! $response -> is_success ;

say $_ -> dump

for HTML :: Form -> parse ($response ,

➥base => $url);

Exécuté sur la page d’accueil d’un moteur de recherche
bien connu, celui-ci affiche :
GET http://www.google.com/search [f]

hl=fr (hidden readonly)

source=hp (hidden readonly)

ie=ISO-8859-1 (hidden readonly)

q= (text)

btnG=Recherche Google (submit)

btnI=J’ai de la chance (submit)

Sélectionner et modifier
des champs de formulaire

$form->value($selector, $value)

Un objet HTML::Form est une suite de champs (objets de la
classe HTML::Form::Input).

412

i

i

“perl” — 2010/9/30 — 13:10 — page 413 — #429
i

i

i

i

i

i

Valider un formulaire

Les champs sont obtenus à l’aide de sélecteurs. Un sé-
lecteur préfixé par # doit correspondre à l’attribut id du
champ. S’il est préfixé par . il doit correspondre à son
attribut class. Le préfixe ^ (ou l’absence de préfixe) cor-
respond à une recherche sur le nom du champ.

Cette méthode est en fait un raccourci, qui combine un
appel à la méthode find_input() de HTML::Form (qui ren-
voie un objet HTML::Form::Input) et à la méthode value()

de HTML::Form::Input.

Les deux lignes de code suivantes sont exactement équi-
valentes :

$form -> value ($selector , $value);

$form -> find_input ($selector) -> value ($value);

Valider un formulaire
$form->click()

Renvoie l’objet HTTP::Request correspondant à la valida-
tion du formulaire. Celui-ci peut ensuite être utilisé avec
la méthode request() de LWP::UserAgent.

413

i

i

“perl” — 2010/9/30 — 13:10 — page 414 — #430
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 415 — #431
i

i

i

i

i

i

24
WWW::Mechanize

L’utilisation de LWP::UserAgent (voir page 397) peut se
révéler fastidieuse pour l’écriture de robots devant réaliser
des navigations longues et complexes, nécessitant contrôle
d’erreur, authentification, utilisation de cookies et vali-
dation de formulaires. Ces opérations exigent l’ajout de
beaucoup de code structurel, qui est nécessaire mais répé-
titif, et obscurcit le déroulement du programme.

WWW::Mechanize est une sous-classe de LWP::UserAgent (ce
qui permet le cas échéant de revenir à la classe de base si
besoin est), qui fournit des méthodes adaptées à l’écriture
de robots. Le code structurel est caché dans des méthodes
de haut niveau, rendant le code source des robots plus
court et plus lisible, puisqu’il ne contient que les opéra-
tions qui font sens au niveau de la navigation.

Créer un objet WWW::Mechanize

WWW::Mechanize->new(%options)

Le constructeur de WWW::Mechanize supporte les options
du constructeur de LWP::UserAgent, et en ajoute quelques-
unes.

i

i

“perl” — 2010/9/30 — 13:10 — page 416 — #432
i

i

i

i

i

i

CHAPITRE 24 WWW::Mechanize

Parmi elles, l’option autocheck (activée par défaut) va for-
cer WWW::Mechanize à vérifier que chaque requête s’est dé-
roulée correctement (c’est-à-dire que la réponse a un code
en 2xx). En général, il n’y a donc pas besoin de vérifier que
les requêtes ont débouché sur un succès.

$ perl - MWWW :: Mechanize \

-e ’ WWW :: Mechanize -> new -> get (shift) ’ \

http :// www . example . com / rien

Error GETing http :// www . example . com / rien :

Not Found at -e line 1

Dans le cas où le robot doit traiter les erreurs de manière
plus fine, il faudra désactiver autocheck et faire la valida-
tion manuellement.

L’option stack_depth permet de définir la taille de l’his-
torique du navigateur. Par défaut, celle-ci n’est pas limi-
tée, mais un robot faisant beaucoup de requêtes risque de
consommer beaucoup de mémoire. Si stack_depth est ini-
tialisée à 0, aucun historique n’est conservé.

WWW::Mechanize active également la gestion des cookies
automatiquement.

L’exemple ci-dessous change les valeurs par défaut :

use WWW :: Mechanize ;

my $m = WWW :: Mechanize -> new (

pas de vérification automatique

autocheck => 0,

mémoire de 5 pages

stack_depth => 5,

pas de cookies

cookie_jar => undef ,

) ;

416

i

i

“perl” — 2010/9/30 — 13:10 — page 417 — #433
i

i

i

i

i

i

Lancer une requête POST

Lancer une requête GET

$m->get($url)

Cette méthode fait un GET sur l’URL en paramètre et
renvoie un objet HTTP::Response.

L’objet HTTP::Response correspondant à la dernière re-
quête est également accessible via la méthode response().

Lancer une requête POST

$m->post($url, . . .)

WWW::Mechanize étant une sous-classe de LWP::UserAgent,
il possède également une méthode post() (voir page 402
pour les détails).

Revenir en arrière
$m->back()

Cette méthode est l’équivalent de l’appui sur le bouton
Back d’un navigateur. Renvoie une valeur booléenne in-
diquant le succès ou l’échec de l’opération.

Elle ne rejoue pas la requête : rien n’est envoyé sur le
réseau. Elle se contente de remettre le robot dans l’état où
il se trouvait avant la dernière requête.

417

i

i

“perl” — 2010/9/30 — 13:10 — page 418 — #434
i

i

i

i

i

i

CHAPITRE 24 WWW::Mechanize

Recharger une page

$m->reload()

Cette méthode rejoue la dernière requête (nouvel envoi
d’une requête identique à la précédente) au serveur. N’al-
tère pas l’historique.

Suivre des liens
$m->follow_link(. . .)

Avec les méthodes décrites ci-après, la puissance d’expres-
sion de WWW::Mechanize commence à apparaître.

find_link() permet de trouver un lien dans la page en
cours. Les critères de recherche permettent de tester l’éga-
lité ou la correspondance avec une expression régulière.

Les critères sont :

● text, text_regex : le texte du lien.

● url, url_regex : l’URL du lien (telle que trouvée dans
le document).

● url_abs, url_abs_regex : l’URL absolue du lien (les
URL relatives étant automatiquement converties).

● name, name_regex : le nom du lien.

● id, id_regex : l’attribut id du lien.

● class, class_regex : l’attribut class du lien.

● tag, tag_regex : la balise du lien (la balise <a> n’est pas
la seule à contenir des liens).

● n : le nième lien correspondant.

418

i

i

“perl” — 2010/9/30 — 13:10 — page 419 — #435
i

i

i

i

i

i

Suivre des liens

Si plusieurs critères sont fournis, le lien renvoyé devra les
respecter tous.

Quelques exemples :

● text_regex => qr/download/ : le texte lien doit corres-
pondre à l’expression régulière qr/download/.

● text => bananana, url_regex => qr/spelling/ : le
texte du lien doit être “bananana”, et l’URL associée
doit correspondre à l’expression régulière qr/spelling/.

● text => ’Cliquez ici’, n => 4 : le lien doit être le
quatrième lien dont le texte est “Cliquez ici”.

Par défaut n est à 1, c’est donc le premier lien correspon-
dant qui sera renvoyé. Le cas particulier n => ’all’ de-
mande de renvoyer l’ensemble des liens correspondants.

L’objet renvoyé est de la classe WWW::Mechanize::Link. La
partie intéressante est son url().

use WWW :: Mechanize ;

my $m = WWW :: Mechanize -> new () ;

$m -> get ($url) ;

trouve le premier lien qui parle de banane

my $link = $m -> find_link (

➥ text_regex => qr / banane /) ;

et affiche son URL

say $link -> url ;

follow_link() est un raccourci pour le cas le plus courant :
elle fait simplement un get() sur le résultat de find_link().

Info

WWW::Mechanize permet de simplifier énormément la gestion de
la complexité décrite page 407. Comme le montrent les sections
suivantes, traitement d’erreur, gestion des cookies et des formu-
laires sont facilités.

419

i

i

“perl” — 2010/9/30 — 13:10 — page 420 — #436
i

i

i

i

i

i

CHAPITRE 24 WWW::Mechanize

Traiter les erreurs
Comme on l’a vu, WWW::Mechanize fait par défaut une ges-
tion d’erreur minimale : le programme meurt quand la
réponse reçue par get() n’est pas un succès.

La méthode success() permet de tester directement le
succès d’une réponse, si le navigateur a été créé sans l’op-
tion autocheck.

my $m = WWW :: Mechanize -> new (autocheck => 0) ;

$m -> get ($url);

if (!$m -> success) {

traitement de l ’ erreur

}

Authentifier
$m->credentials($username, $password)

La méthode credentials définit le nom d’utilisateur et le
mot de passe à utiliser jusqu’à nouvel ordre.

Gérer les cookies
Les cookies sont gérés automatiquement par WWW::Mecha-
nize.

Il est toujours possible d’utiliser le paramètre cookie_jar

du constructeur pour forcer par exemple l’utilisation de
cookies sauvegardés dans un fichier (voir page 410).

420

i

i

“perl” — 2010/9/30 — 13:10 — page 421 — #437
i

i

i

i

i

i

Sélectionner un formulaire par son nom

Gérer les formulaires
$m->forms

La méthode forms() renvoie la liste des objets HTML::Form
associés aux formulaires de la page en cours.

Lorsqu’il faut afficher des formulaires intermédiaires au
cours de la navigation (typiquement lors de l’écriture d’un
programme complexe), il est utile d’employer la formula-
tion suivante :

print $_ -> dump () for $m -> forms () ;

La plupart des méthodes de WWW::Mechanize associées aux
formulaires travaillent sur le formulaire courant, qui a été
sélectionné au moyen d’une des méthodes décrites ci-
après. Si aucun formulaire n’a été sélectionné, le formu-
laire par défaut est le premier de la page.

Sélectionner un formulaire par
son rang

$m->form_number($number)

Sélectionne le nième formulaire de la page. Attention, la
numérotation commence à 1.

Sélectionner un formulaire par son
nom

$m->form_name($name)

Sélectionne le premier formulaire portant le nom donné.

421

i

i

“perl” — 2010/9/30 — 13:10 — page 422 — #438
i

i

i

i

i

i

CHAPITRE 24 WWW::Mechanize

Sélectionner un formulaire par son
identifiant

$m->form_id($id)

Sélectionne le premier formulaire ayant l’attribut id donné.

Sélectionner un formulaire par
ses champs

$m->form_with_fields(@fields)

Sélectionne le premier formulaire comportant les champs
dont les noms sont donnés.

Remplir le formulaire
sélectionné

$m->set_fields(. . .)

Cette méthode modifie plusieurs champs du formulaire
courant. Elle prend une liste de paires clé/valeur, repré-
sentant les noms des champs et les valeurs à leur appliquer.

$m -> set_fields (

username => ’ anonyme ’,

passowrd => ’ s3kr3t ’ ,

) ;

422

i

i

“perl” — 2010/9/30 — 13:10 — page 423 — #439
i

i

i

i

i

i

Sélectionner, remplir et valider un formulaire

Valider le formulaire sélectionné
$m->submit()

$m->click($button)

Ces deux méthodes valident et envoient le formulaire vers
le serveur.

submit() envoie le formulaire, sans cliquer sur aucun bou-
ton.

click() envoie le formulaire en simulant le clic sur un
bouton. Si aucun nom de bouton n’est donné en para-
mètre, elle simule un clic sur le premier bouton.

Sélectionner, remplir et valider un
formulaire

$m->submit_form(. . .)

Cette méthode combine la sélection du formulaire, son
remplissage et sa validation en un seul appel.

Le code suivant :

$m -> submit_form (

form_name => ’ search ’,

fields => { query => ’ Perl ’ },

button => ’ Search Now ’,

) ;

sera équivalent à :

$m -> form_name (’ search ’);

$m -> fields (query => ’ Perl ’);

$m -> click (’ Search Now ’);

423

i

i

“perl” — 2010/9/30 — 13:10 — page 424 — #440
i

i

i

i

i

i

CHAPITRE 24 WWW::Mechanize

Exemple d’application
Pour illustrer l’utilisation de WWW::Mechanize, l’exemple
d’un site de « paste » va être utilisé. Ces sites web per-
mettent de coller du texte dans un formulaire simple, et
renvoient un URL qu’il suffit ensuite de faire suivre à
un correspondant pour qu’il puisse visualiser le texte en
question. Ce genre de site est très utilisé sur IRC (en par-
ticulier sur les canaux consacrés à la programmation), afin
d’éviter de polluer les canaux avec des lignes et des lignes
de code. Certains sites sont connectés à un robot qui an-
nonce les nouveaux ajouts sur le canal sélectionné.

C’est le site http://nopaste.snit.ch qui sera utilisé1.

Le programme suivant se connecte au site et y sauvegarde
le contenu de l’option –paste ou à défaut le contenu de
l’entrée standard, ce qui permet de l’utiliser à la fin d’une
ligne de commande Unix.

use strict ;

use warnings ;

use 5.010;

use WWW :: Mechanize ;

use Getopt :: Long ;

my $paste = ’ http :// nopaste . snit . ch / ’;

récupération des options

my % option = (

channel => ’’,

nick => ’’,

summary => ’’,

paste => ’’,

list => ’’,

) ;

1. Il en existe de nombreux autres, utilisant la même interface ou une
interface similaire. Le module CPAN unifiant l’accès aux sites de paste
est App::Nopaste.

424

i

i

“perl” — 2010/9/30 — 13:10 — page 425 — #441
i

i

i

i

i

i

Exemple d’application

GetOptions (

\% option , ’ nick = s ’,

’ summary =s ’ , ’ paste =s ’,

’ channel =s ’ , ’ list ! ’ ,

) or die " Mauvaises options ";

création du robot et connexion au site

my $m = WWW :: Mechanize -> new ;

$m -> get ($paste) ;

affiche la liste des canaux

if ($option { list }) {

print " Canaux disponibles :\ n" ,

map " - $_ \n" , grep $_ ,

$m -> current_form ()

-> find_input (’ channel ’)

-> possible_values ;

exit ;

}

sans option paste ,

lit les données sur l ’ entrée standard

if (! $option { paste }) {

$option { summary } ||= $ARGV [0] || ’- ’;

$option { paste } = join "" , <>;

}

remplit et valide le formulaire

note : list n ’ est dans le formulaire

delete $option { list };

$m -> set_fields (% option);

$m -> click ;

affiche l ’ URL donnée en réponse

print +($m -> links) [0] - > url , "\n ";

L’option list, quand elle est activée, fournit la liste des
canaux IRC disponibles en affichant les valeurs possibles
du champ associé du formulaire (obtenues à l’aide des mé-
thodes de HTML::Form).

425

i

i

“perl” — 2010/9/30 — 13:10 — page 426 — #442
i

i

i

i

i

i

CHAPITRE 24 WWW::Mechanize

JavaScript

De nombreux sites utilisent JavaScript pour faire exécuter du
code par le client, le plus souvent lié à la présentation, mais
pas seulement.

Ainsi, le code JavaScript peut créer des cookies (normale-
ment, les cookies sont envoyés par le serveur) qui ne se-
ront pas détectables par LWP::UserAgent. La technologie dite
« AJAX » va ainsi créer des requêtes supplémentaires pour ob-
tenir des données (en général au format JSON) qui seront utili-
sées par le code JavaScript pour modifier les données affichées.

En général, il n’y a pas besoin d’exécuter le JavaScript pour
simuler la navigation d’un utilisateur humain. La lecture du
code JavaScript et l’analyse du trafic HTTP suffisent souvent
à découvrir quels requêtes ou en-têtes supplémentaires sont
nécessaires.

Néanmoins, certains sites (trop modernes ou mal conçus) ne
sont véritablement fonctionnels qu’avec un navigateur dispo-
sant d’un support JavaScript. Il existe toutefois plusieurs solu-
tions, disponibles sur le CPAN, pour naviguer mécaniquement
avec exécution du code JavaScript.

Les utilisateurs du système Windows peuvent déjà essayer avec
Win32::IE::Mechanize, qui permet de piloter Internet Explo-
rer au travers du protocole OLE. Mais ce module n’est toutefois
plus vraiment maintenu.

Les utilisateurs de systèmes Unix peuvent eux regarder les mo-
dules Mozilla::Mechanize et Gtk2::WebKit::Mechanize,
qui tous les deux s’appuient sur le toolkit Gtk2 et son sup-
port pour embarquer un moteur de navigation, dans le premier
cas Gecko, le moteur de Mozilla Firefox, et dans le second cas

426

i

i

“perl” — 2010/9/30 — 13:10 — page 427 — #443
i

i

i

i

i

i

Exemple d’application

WebKit, le moteur de Safari et Chrome. Le défaut de ces mo-
dules est qu’ils sont écrits en XS et nécessitent donc de dis-
poser des sources des moteurs en question, ce qui les rend
difficiles à installer.

WWW::Mechanize::Firefox est de ce point de vue déjà plus
facile à mettre en place car il s’appuie sur le plugin MozRepl
de Firefox qui permet de contrôler le navigateur à distance par
un simple protocole. Le module est donc pur Perl, et Firefox
étant disponible sur de nombreux systèmes, l’installation et
l’utilisation de cette solution est bien plus envisageable.

Il existe encore une dernière solution, WWW::Scripter, qui fait

partie de ces modules totalement fous (mais dans le bon sens

du terme) qui peuplent le CPAN. Il s’agit d’une sous-classe

de WWW::Mechanize qui utilise des modules implémentant un

moteur JavaScript (JE) avec les supports DOM pour HTML et

CSS associés. Tous ces modules étant en pur Perl, leur ins-

tallation ne pose normalement pas de problème particulier.

WWW::Scripter peut aussi utiliser SpiderMonkey, le moteur

JavaScript de Mozilla Firefox, mais le module Perl correspon-

dant a le problème usuelle de la dépendance aux sources du

logiciel pour son installation. Il n’est pas impossible qu’il sup-

porte aussi V8, le moteur JavaScript de Chrome, étant donné

que JavaScript::V8 fournit déjà l’interface.

427

i

i

“perl” — 2010/9/30 — 13:10 — page 428 — #444
i

i

i

i

i

i

i

i

“perl” — 2010/9/30 — 13:10 — page 429 — #445
i

i

i

i

i

i

A
Tableau

récapitulatif
des opérateurs

Cette annexe fournit la liste des opérateurs de Perl, pré-
sentés dans l’ordre de précédence.

Précédence Nom Description

1 -> Déréférencement, appel de méthode

2 ++ Incrémentation de variable

2 – Décrémentation de variable

3 ** Puissance

4 ! NON logique

4 ∼ NON binaire

4 \ Création de référence

5 =∼ Application d’une expression régulière

5 !∼ Application négative d’une expression
régulière

6 * Multiplication

6 / Division

6 % Modulo

i

i

“perl” — 2010/9/30 — 13:10 — page 430 — #446
i

i

i

i

i

i

ANNEXE A Tableau récapitulatif des opérateurs

Précédence Nom Description

6 x Duplication de chaînes

7 + - . Opérations arithmétiques et concaténation

8 << Décalage binaire gauche

8 >> Décalage binaire droit

9 < et <= Infériorité numérique

9 > et >= Supériorité numérique

9 lt et le Infériorité de chaîne

9 gt et ge Supériorité de chaîne

10 == Égalité numérique

10 != Non-égalité numérique

10 <=> Comparaison numérique

10 eq Égalité de chaîne

10 ne Non-égalité de chaîne

10 cmp Comparaison de chaînes

11 & ET binaire

12 | OU binaire

12 ^ OU exclusif binaire

13 && ET logique

14 || OU logique

15 .. et . . . Création d’intervalles

16 ? : Test alternatif

17 = Affectation de variable

17 += -= *= etc. Modification et affectation

18 , Création de liste

18 => Création de liste

19 not NON logique (faible précédence)

20 and ET logique (faible précédence)

21 or OU logique (faible précédence)

21 xor OU exclusif logique

430

i

i

“perl” — 2010/9/30 — 13:10 — page 431 — #448
i

i

i

i

i

i

Index

Symboles

| (regexp) 121
* (opérateur) 24
** (opérateur) 24
+ (opérateur) 24
++ (opérateur) 24
+= (opérateur) 24
- (opérateur) 24
– (opérateur) 24
-= (opérateur) 24
. (opérateur) 25
. (regexp) 100
.. (opérateur) 48, 61
/ (opérateur) 24
$/ (variable prédéfinie)

185-187
=∼ (regexp) 97, 98
== (opérateur) 30
? (regexp) 112
?+ (regexp) 115
?? (regexp) 114
$ (regexp) 100, 107, 108
% (opérateur) 24, 89
$_ (variable prédéfinie) 36, 86,

87, 89, 97, 98, 124
^ (opérateur) 73
^ (regexp) 100, 107
\D (regexp) 105
\G (regexp) 109
\K (regexp) 109
\S (regexp) 105
\W (regexp) 105, 108
\Z (regexp) 108

\b (regexp) 108
\d (regexp) 105, 111
\s (regexp) 105, 111
\w (regexp) 105, 108, 111
\z (regexp) 108
> (opérateur) 30
>= (opérateur) 30
< (opérateur) 30
<= (opérateur) 30
-> (opérateur) 40
=> (opérateur) 74
$! (variable prédéfinie) 184,

195
{n,}+ (regexp) 115
{n,}? (regexp) 114
{n,m} (regexp) 113
{n,m}+ (regexp) 115
{n,m}? (regexp) 114
{n} (regexp) 113
{n}+ (regexp) 115
{n}? (regexp) 114
\1 (variable prédéfinie) 117
$1 (variable prédéfinie) 97, 98,

117
\2 (variable prédéfinie) 117
$2 (variable prédéfinie) 97, 98,

117
\3 (variable prédéfinie) 117
$3 (variable prédéfinie) 97, 98,

117

i

i

“perl” — 2010/9/30 — 13:10 — page 432 — #449
i

i

i

i

i

i

C

A

abstraction SQL 223
accès à un objet Moose 140
alternative d’expression

régulière 121
analyse de document HTML 363
HTML::Parser, 365

arrêt, 369
événement, 366
instanciation, 365
lancement, 368

HTML::TokeParser

balise, 379
texte, 380, 381
token, 378

HTML::TreeBuilder

création, 384
recherche, 385

HTML::TreeBuilder, 383
HTML::TokeParser, 377
regexp, 364

ancre d’expression régulière
correspondance globale, 109
début de chaîne, 108
début de ligne, 106
fin de chaîne, 108
fin de ligne, 107
frontière de mot, 108
par préfixe, 109

année 259
AnyEvent::CouchDB (module)

244
aplatissement

de liste, 61
de tableau, 61

App::cpanminus (module) 11
arbre DOM 276
arrêter un programme 42
atome d’expression réguliere

102
attribut

d’élément XML, 293

Moose, 138
avec déclencheur, 150
obligatoire, 144
paresseux, 148

augmentation de méthode
parente Moose 177

awk 124

B

base de données 203
abstraction SQL, 223
DBI, 203

connexion, 205
déconnexion, 209
erreur, 216
profiling, 219
test connexion, 208
trace, 217

KiokuDB, 239
administration, 242
récupération, 240
stockage, 240

non-SQL
clé-valeur, 243
document, 244

ORM, 232
BerkeleyDB 239
bless (fonction) 132
boucle 35
foreach, 35
sur hash, 82, 83
sur liste, 65
sur tableau, 65
while, 36

C

chaînage d’attribut Moose 153
chaîne de caractères 20

création, 20

432

IN
DE

X

i

i

“perl” — 2010/9/30 — 13:10 — page 433 — #450
i

i

i

i

i

i

D

champ de formulaire HTML 412
changement de répertoire 201
chargement de document XML

275, 286
chemin de fichier 189, 190
chomp (fonction) 25
chop (fonction) 25, 37
Class::DBI (module) 232, 233
classe

d’un objet, 132
de caractères, 104
Moose, 137

clé de hash 81
commande système 42
communication entre sessions

POE 336
Config::IniFiles (module) 320,

322
consommation de rôle Moose

157
constructeur

d’objet, 135
Moose, 159

construction
d’attribut Moose, 147
d’objet Moose, 159

contenu d’élément XML 292
contexte 22

de liste, 23
scalaire de chaine, 23
scalaire numérique, 22

cookie HTTP 410, 420
copier-coller XML 297
cos (fonction) 24
CouchDB 240, 244
CouchDB::Client (module) 244
CPAN (Comprehensive Perl

Archive Network) 7
cpanm 11
création

d’objet, 131
de répertoire, 193
de session POE, 331

Cwd (module) 201

D

déboggage 14
Data::Dumper (module) 71-73,

82, 301, 303, 305-307, 316,
361

Data::Phrasebook::SQL

(module) 226
Data::Phrasebook (module)

223, 224, 226
Data::Phrasebook::SQL

(module) 223-225, 227, 230
date

du jour, 259
interprétation, 249

langue, 251
str2time, 250
strptime, 250

date et heure 247
DateTime

année, 259
date du jour, 259
durée, 263
formateur, 268
heure, 261
interprétation, 270
intervalle de temps, 263
jour, 260
maintenant, 258
mois, 260
seconde, 261

durée, 252, 263
maintenant, 254

interprétation de durée, 253
intervalle de temps, 252, 263

maintenant, 254
Date::Language (module) 251
Date::Parse (module) 250, 251
DateTime

année, 259

433

IN
DEX

i

i

“perl” — 2010/9/30 — 13:10 — page 434 — #451
i

i

i

i

i

i

D

DateTime (suite)
calcul

ajout de durée, 265
futur, 264
intervalle, 267
passé, 265
soustraction de durée, 266

date du jour, 259
formateur, 268
heure, 261
interprétation, 270
jour, 260
maintenant, 258
mois, 260
seconde, 261

DateTime (module) 251, 256,
259, 263-265, 267-270

DateTime::Duration (module)
256, 263, 265-267

DateTime::Event (module) 256
DateTime::Format::Oracle

(module) 271
DateTime::Format (module)

256, 268
DateTime::Format::Builder

(module) 271
DateTime::Format::DBI

(module) 271
DateTime::Format::Human

(module) 271
DateTime::Format::Human::-

Duration (module)
271

DateTime::Format::Natural

(module) 271
DateTime::Format::Pg

(module) 268
DateTime::Format::SQLite

(module) 271
DateTime::Format::Strptime

(module) 270, 271
DB2 204
DBD::Gofer (module) 205

DBD::mysql (module) 206
DBD::mysqlPP (module) 204
DBD::Nagios (module) 205
DBD::Oracle (module) 206
DBD::Pg (module) 206
DBD::PgPP (module) 204
DBD::Proxy (module) 205
DBD::Wire10 (module) 204
DBD::WMI (module) 204
DBI 203, 349

connexion, 205
déconnexion, 209
erreur, 216
POE, 348
profiling, 219
requête

combinaison, 214
donnée de retour, 212
exécution, 211
liaison, 211
préparation, 209

test de connexion, 208
trace, 217

DBIx::Class

architecture, 233
schéma, 234, 237

DBI (module) 204-219, 224,
239, 349

DBI::Prof (module) 221
DBI::PurePerl (module) 204
$DBI_DRIVER (variable

prédéfinie) 206
$DBI_DSN (variable prédéfinie)

206
$DBI_PROFILE (variable

prédéfinie) 219, 220
$DBI_TRACE (variable prédéfinie)

217
DBIx::Class (module) 233, 236
DBIx::Class::Row (module)

234
DBIx::Class::Schema::Loader

(module) 236

434

IN
DE

X

i

i

“perl” — 2010/9/30 — 13:10 — page 435 — #452
i

i

i

i

i

i

E

DBIx::Class::Schema::-

Loader::Base (module)
236

DBIx::Connect::FromConfig

(module) 207
déclaration

de fonction, 26
simple d’attribut Moose, 153

defined (fonction) 56, 78
délégation de méthode parente

Moose 179, 180
delete (fonction) 78
delta_days() (fonction) 268
delta_md() (fonction) 267
delta_ms() (fonction) 268
déréférencement

d’attribut Moose, 151
de hash, 84

descripteur de fichier
écriture, 187
fermeture, 188
lecture, 185

destruction d’objet Moose 159
die (fonction) 42, 184, 195,

341
do (fonction) 303
DOM (Document Object Model)

274, 284
DTD (Document Type Definition)

285
durée de temps 252, 263

maintenant, 254

E

each (fonction) 83
Eclipse 4, 6, 16
écriture de fichier 187
ed 96
Editplus 5
élément

de tableau, 51

XML, 290, 291
Emacs 5
envoi d’événement POE 332
EPIC 4, 16
eq (opérateur) 31
espace de nommage 43
eval (fonction) 98, 303, 361
événement POE 327
exécuter perl 3

fichier exécutable, 15
ligne de commande, 13
mode débug, 15
sur un fichier, 15

exécution de requête SQL 211
exists (fonction) 56, 78
exit (fonction) 341
expression régulière

alternative, 121
ancre

correspondance globale, 109
début de chaîne, 108
début de ligne, 106
fin de chaîne, 108
fin de ligne, 107
frontière de mot, 108
par préfixe, 109

Regexp::Assemble, 126
atome, 102
classe de caractère, 104
Regexp::Common, 124
découpage, 122
groupe

capturant, 116
non capturant, 119

métacaractère, 102
modificateur

casse, 99
correspondance globale, 101
extension de syntaxe, 101
ligne simple, 100
multiligne, 100

quantifieur
*, 111

435

IN
DEX

i

i

“perl” — 2010/9/30 — 13:10 — page 436 — #453
i

i

i

i

i

i

H

quantifieur (suite)
+, 112
?, 112
{n,m}, 113
{n}, 113
non avide, 114
possessifs, 115

recherche, 96
et remplacement, 97

stockage, 98
Text::Match::Fast-

Alternatives,
128
YAPE::Regex::Explain, 128

F

fermeture de fichier 188
fichier

.ini, 320
de configuration, 320
écriture, 187
fermeture, 188
lecture, 185
ouverture, 183
Path::Class, 190, 191
Path : :Class

chemin, 189
temporaire, 197

File::HomeDir (module) 200
File::HomeDir (module) 199,

200
File::pushd (module) 202
File::Slurp (module) 187
File::stat (module) 193
File::Temp (module) 197, 198,

202
fonction

déclaration, 26
passage de paramètres, 27
valeur de retour, 28
variable locale, 29

foreach (mot-clé) 36
foreach (fonction) 82, 87
format de date 268
formulaire

HTML, 411
HTTP, 421

G

ge (opérateur) 31
génération de document XML

289
gestion d’erreur SQL 216
gestionnaire d’événement
HTML::Parser 366

Getopt::Long (module) 42
grep (fonction) 86, 89
grep 96
groupe d’expression régulière

capturant, 116
non capturant, 119

gt (opérateur) 31
Gtk2::WebKit::Mechanize

(module) 426

H

hash 19, 74
affichage, 82
boucle, 82, 83
création, 75
déréférence, 84
élément, 76
liste de clés, 81
liste de valeurs, 81
référence, 84
suppression d’élément, 78
test d’élément, 78
tranche, 79

héritage de classe Moose 154
heure 261

436

IN
DE

X

i

i

“perl” — 2010/9/30 — 13:10 — page 437 — #454
i

i

i

i

i

i

I

HTML 114, 273, 363
analyse, 363
HTML::Parser, 365
HTML::TokeParser, 377
HTML::TreeBuilder, 383
regexp, 364

formulaire, 411
HTML::Element (module) 383,

386
HTML::Form (module) 411-413,

421
HTML::Form::Input (module)

412, 413
HTML::Parser (module) 276,

365-367, 377, 379, 381,
383, 385, 387

HTML::TokeParser (module)
376-379, 387

HTML::Tree (module) 383
HTML::TreeBuilder (module)

383, 384, 387
HTTP 389

adresse, 390
cookie, 410
LWP, 395

contenu, 396
get, 395
head, 396
simple, 395

LWP::UserAgent, 397
contenu, 400
création, 397
get, 399
head, 401
post, 402, 403
réponse, 398

réponse, 393
requête, 391, 392, 396, 399,
401-403

HTTP::Cookies (module) 398,
410-411

HTTP::Headers (module) 392,
399

HTTP::Message (module)
392-394, 399

HTTP::Reponse (module) 399
HTTP::Request (module) 393,

399, 402, 403, 413
HTTP::Request::Common

(module) 402
HTTP::Response (module) 394,

397-401, 403, 407, 417

I

IDE 4, 13, 16
IDE 4
if (opérateur) 184
index (fonction) 26
Ingres 204
INI (format) 320
installer Perl

sous Linux, 5
sous Mac, 6
sous Windows, 6

installer un module
avec cpan, 10
avec cpanm, 11

interprétation
de date, 249

DateTime, 270
langue, 251
str2time, 250
strptime, 250

de durée, 253
intervalle 48

de temps, 252, 263
maintenant, 254

inversion
de liste, 60
de tableau, 60

IO::File (module) 183-185,
188, 194

IO::Handle (module) 286
IO::Select (module) 326

437

IN
DEX

i

i

“perl” — 2010/9/30 — 13:10 — page 438 — #455
i

i

i

i

i

i

M

IO::Socket (module) 326

J

JavaScript::V8 (module) 427
JE (module) 427
join (fonction) 25
jour 260
JSON (module) 310
JSON (JavaScript Object

Notation) 308, 323
sérialisation de données, 310

JSON::XS (module) 310

K

keys (fonction) 81
KiokuDB

administration, 242
récupération, 240
stockage, 240

KiokuDB (module) 238-240,
242, 245

KiokuDB::Cmd (module) 242

L

last (mot-clé) 36
le (opérateur) 31
lecture de fichier 185
length (fonction) 54
lex 110
lier une requête SQL 211
List::MoreUtils (module) 47,

89
List::Util (module) 47, 89
liste 47

aplatissement, 61
de mots, 49
de répertoires, 193

dédoublonnage, 94
inversion, 60
mélange, 92
plus grand élément, 90
plus petit élément, 90
premier élément, 89
réduction, 91
somme, 92
tricotage, 93

local (fonction) 187
lt (opérateur) 31
LWP 395

contenu, 396
get, 395
head, 396
simple, 395

LWP (module) 389, 392-395,
397, 411

LWP::ConnCache (module) 398
LWP::Simple (module) 395
LWP::UserAgent (module)

397-399, 403, 404,
408-410, 413, 415, 417, 426

LWP::UserAgent 397
contenu, 400
création, 397
get, 399
head, 401
post, 402
réponse, 398
requête, 403

M

m// (regexp) 96-98
MacPorts 6
maintenant 258
map (fonction) 86, 87, 89
Marpa (module) 110
Memcached 243
message différé POE 339

438

IN
DE

X

i

i

“perl” — 2010/9/30 — 13:10 — page 439 — #456
i

i

i

i

i

i

M

métacaractère d’expression
réguliere 102

méthode
d’un objet, 133
obligatoire de rôle Moose, 158
parente Moose, 176

modificateur d’expression
réguliere
casse, 99
correspondance globale, 101
extension de syntaxe, 101
ligne simple, 100
multiligne, 100

modification
d’accesseur Moose, 141
d’attribut Moose hérité, 156
de méthode Moose, 171-174

module
création, 43
utilisation, 44

mois 260
MongoDB 240
Moose 137

attribut
avec déclencheur, 150
chaînage, 153
construction, 147
déclaration, 138
déclaration simple, 153
déréférencement, 151
héritage, 156
obligatoire, 144
paresseux, 148
prédicat, 143
référence faible, 152
typage, 145
valeur par défaut, 145

classe
déclaration, 137
héritage, 154

constructeur, 159
héritage

attribut, 156

augmentation de méthode,
177

délégation de méthode,
179-180

super, 176
surcharge, 155

méthode
augmentation, 177
délégation, 179, 180
intercalage, 174
modification, 171
parente, 176
post-traitement, 173
prétraitement, 172
surcharge, 155

objet
accès, 140
accesseur, 141
construction, 159
déstruction, 159, 161

rôle
consommation, 157
création, 156
méthode obligatoire, 158

typage
création, 166
de base, 163
énumération, 167
personnalisé, 165
sous-type, 165
transtypage, 168
union, 167

Moose (module) 131, 135,
137-180, 238, 355

Moose::FollowPBP (module)
142

Moose::Meta::Attribute::-

Native::Trait::Hash

(module) 181
Moose::Object (module) 138,

159
Moose::Role (module) 157

439

IN
DEX

i

i

“perl” — 2010/9/30 — 13:10 — page 440 — #457
i

i

i

i

i

i

P

Moose::Util::TypeConstraints

(module) 165, 166
MooseX::ChainedAccessor

(module) 153
MooseX::Has::Sugar (module)

153
MooseX::POE (module) 355, 356
MooseX::SemiAffordance-

Accessor (module)
142

MooseX::Singleton (module)
138

Mozilla::Mechanize (module)
426

my 19
MySQL 204

N

navigation web 407, 415
authentification, 408
formulaire, 411

champ, 412
validation, 413

traitement des erreurs, 407
ne (opérateur) 31
next (mot-clé) 36
non-SQL

clé-valeur, 243
document, 244

notepad++ 5
noyau POE 329

O

open() (fonction) 284
opérateurs

and, 34
conditionnels, 32
de chaînes, 25
de test, 29, 31

or, 34
précédence, 25, 429
sur scalaires, 24
test négatif, 33, 34

Oracle 204
ORM (Object-Relational

Mapping) 232
ouverture de fichier 183, 194

P

package (mot-clé) 43
Padre 4, 6, 16
paramètre

d’événement POE, 333
de fonction, 27
ligne de commande, 41
par référence, 39

parcourir un répertoire 196
parcours

DOM, 277
SAX, 281
XPath, 280

Parse::RecDescent (module)
110

Parse::Yapp (module) 110
Path::Class (module)

189-191, 193, 195-196,
200, 201
chemin, 189, 190
fichier

ouverture, 194
suppression, 196

répertoire
création, 193
information, 193
liste, 193
parcours, 196
parent, 191
sous-répertoire, 191
suppression, 193

440

IN
DE

X

i

i

“perl” — 2010/9/30 — 13:10 — page 441 — #458
i

i

i

i

i

i

P

Path::Class::Dir (module)
191

Path::Class::File (module)
194

Path::Class:File (module)
191

POE (module) 326-362
POE (Perl Object Environment)

325
composant

DBI, 348
de bas niveau, 348
de haut niveau, 346

distribué, 357
client, 359
serveur, 358

entrée-sortie, 345
événement, 327

paramètre, 333
message

à heure dite, 340
différé, 339

noyau, 329
principe, 326
session, 328

communication, 336
création, 331
variable, 335

terminer, 341
traitement, 341

POE::Component (module) 346
POE::Component::Client::-

CouchDB (module)
244

POE::Component::EasyDBI

(module) 348, 349, 354, 355
POE::Component::IKC::Client

(module) 359
POE::Component::IKC::Server

(module) 358
POE::Kernel (module) 329
POE::Wheel (module) 347
POE::Wheel::Run (module) 349

pop (fonction) 57
POSIX 96, 105
PostgreSQL 204, 239
précédence 25, 429
préparation de requête SQL 209
print (fonction) 20
print (mot-clé) 20
printf (fonction) 188
profiling SQL 219
programmation événementielle

325
client, 359
composant

DBI, 348
de bas niveau, 348
de haut niveau, 346
de niveau intermédiaire, 347

distribuée, 357
entrée-sortie, 345
événement, 327

envoi, 332
paramètre, 333

message
à heure dite, 340
différé, 339

noyau, 329
principe, 326
serveur, 358
session, 328

communication, 336
création, 331
variable, 335

terminer, 341
traitement, 341

programmation objet
classe, 132
concept, 131
constructeur, 135
création d’objet, 132
méthode

appel, 133
définition, 133

441

IN
DEX

i

i

“perl” — 2010/9/30 — 13:10 — page 442 — #459
i

i

i

i

i

i

S

Moose, 137
constructeur, 159
héritage, 154

push (fonction) 57

Q

q() (opérateur) 21
QED 96
qr// (regexp) 99
quantifieur d’expression

régulière
*, 111
+, 112
?, 112
{n,m}, 113
{n}, 113
non avide, 114, 115

qw (opérateur) 49

R

Redis 240, 243, 244
référence 18

accès, 38
déréférence, 38, 68
fonction, 40
hash, 84
paramètre, 39
scalaire, 37
tableau, 67, 69

regexp voir expression régulière
Regexp::Assemble (module)

126, 127
Regexp::Common (module) 124,

125
Regexp::Grammars (module)

110
Regexp::Keep (module) 109
répertoire

changement, 201

courant, 201
parent, 191
personnel, 199
temporaire, 198

réponse HTTP 393
requête HTTP 391, 392, 396,

399, 401-403, 417
return (mot-clé) 28
reverse (fonction) 60
rindex (fonction) 26
rôle Moose 156

S

s/// (regexp) 97, 98, 109
SAX (Simple API for XML) 275,

281
say (fonction) 20
say (mot-clé) 20
scalaire 18, 19

affichage, 19
déclaration, 19
déréférence, 38
initialisation, 19
opérateurs, 24

de chaînes, 25
référence, 37
test de définition, 26

scalar() (mot-clé) 24
SciTE 5
seconde 261
sérialisation de données 301
Data::Dumper, 301
JSON, 310
Storable, 307
YAML, 316

session POE 328
set_inner_xml (fonction) 293
shift (fonction) 58
sigil 18, 21, 38, 50
sin (fonction) 24
sous-répertoire 191

442

IN
DE

X

i

i

“perl” — 2010/9/30 — 13:10 — page 443 — #460
i

i

i

i

i

i

T

splice (fonction) 58
split (fonction) 25, 122-124
SQL

abstraction, 223
combinaison, 214
donnée de retour, 212
erreur, 216
exécution, 211
liaison, 211
ORM, 234
préparation, 209
POE, 348
profiling, 219
trace, 217

SQLite 204, 239
Storable (module) 307, 308
strict (module) 138
structure hybride 85
substr (fonction) 26
supprimer

fichier, 196
répertoire, 193

surcharge de méthode Moose
155

system (fonction) 42

T

table de hachage 18, 19, 74
affichage, 82
boucle, 82, 83
création, 75
déréférence, 84
élément, 76
liste de clés, 81
liste de valeurs, 81
référence, 84
suppression d’élément, 78
test d’élément, 78
tranche, 79

tableau 18, 50

à plusieurs dimensions, 67, 70,
71
affectation d’élément, 52, 55
affichage, 71
aplatissement, 61
boucle, 65
début, 58
déréférence, 68
dernier élément, 53
élément, 51
fin, 56
inversion, 60
milieu, 58
premier élément, 53
référence, 67, 69
suppression d’élément, 60
taille, 54
test d’élément, 55
tranche, 62

Tera Term 13
terminer un programme POE

341
Text::Match::Fast-

Alternatives (module)
128

TextMate 5
Tie::Hash::NamedCapture

(module) 119
Time::Duration (module)

252-255
Time::Duration::fr (module)

255
Time::HiRes (module) 340
Tokyo Cabinet 243
trace SQL 217
tranche de tableau 62
transtypage Moose 168
typage Moose 163, 165-168
types de données 18

liste, 47
structure hybride, 85
table de hachage, 19, 74
tableau, 18, 50

443

IN
DEX

i

i

“perl” — 2010/9/30 — 13:10 — page 444 — #461
i

i

i

i

i

i

W

U

uc (fonction) 87
undef (mot-clé) 19, 23, 30, 385
Unicode 110, 311
unshift (fonction) 58
URI (module) 390, 391, 395,

399
URI (Uniform Resource

Identifier) 363, 390
URI::http (module) 391
URL (Uniform Resource Locator)

390
use (mot-clé) 44
UTC (Temps universel

coordonné) 262

V

valeur de retour 28
valeurs de hash 81
validation de formulaire HTML

413, 423
values (fonction) 81
variable

de session POE, 335
scalaire, 19

version de Perl 1
vim 5

W

warnings (module) 138
Web 389

adresse, 390
cookie, 410
LWP, 395

contenu, 396
get, 395
head, 396
simple, 395

LWP::UserAgent, 397
navigation, 407

authentification, 408
formulaire, 411
traitement des erreurs, 407

réponse, 393
requête, 391, 392, 396, 399,
401-403, 417
WWW::Mechanize, 415

authentification, 420
back, 417
cookie, 420
création, 415
formulaire, 421
get, 417
lien, 418
post, 417
rechargement de page, 418
simple, 415
traitement des erreurs, 420

while (mot-clé) 36, 37
Win32::IE::Mechanize

(module) 426
WWW::Mechanize (module)

415-427
back, 417
cookie, 420
création, 415
formulaire, 421

raccourcis, 423
remplissage, 422
sélection, 421, 422
validation, 423

get, 417
lien, 418
post, 417
rechargement de page, 418
traitement des erreurs, 420

WWW::Mechanize::Firefox

(module) 427
WWW::Mechanize::Link

(module) 419
WWW::Scripter (module) 427

444

IN
DE

X

i

i

“perl” — 2010/9/30 — 13:10 — page 445 — #462
i

i

i

i

i

i

Y

X

XHTML 373
XML 273
XML::LibXML, 275

chargement, 275
DOM, 277
SAX, 281
XPath, 280

XML::Twig

chargement, 286
copier-coller, 297
création, 285
génération, 289
handlers, 287

XML::LibXML (module)
275-277, 279-281, 286

XML::SAX (module) 281
XML::SAX::Base (module) 282
XML::SAX::Machines (module)

283, 284
XML::SAX::Manifold (module)

284
XML::SAX::Pipeline (module)

284
XML::Twig (module) 284-291,

294, 297, 299
XML::Twig::Elt (module) 285,

287, 289, 291-294
xor (opérateur) 73
XPath 280, 287, 295

Y

yacc 110
YAML 224, 313, 316, 323
YAML (module) 316
YAML::Syck (module) 316
YAML::XS (module) 316
YAPE::Regex::Explain

(module) 128

445

IN
DEX

LE GUIDE DE SURVIE

Perl moderne
Ce Guide de survie est l’outil indispensable pour programmer
en Perl aujourd’hui. Il présente les dernières évolutions de
Perl 5 par ses versions 5.10 et 5.12, fortement empreintes
de la version 6 en cours de fi nalisation.

CONCIS ET MANIABLE
Facile à transporter, facile à utiliser — fi nis les livres
encombrants !

PRATIQUE ET FONCTIONNEL
Plus de 350 séquences de code pour répondre aux
situations les plus courantes et exploiter effi cacement
les fonctions et les bibliothèques d’un langage qui s’est
radicalement modernisé.

Sébastien Aperghis-Tramoni, Philippe Bruhat, Damien
Krotkine et Jérôme Quelin sont activement impliqués dans la
communauté Perl française, via l’association Les Mongueurs
de Perl, qui organise notamment « Les Journées Perl ». Ils
sont les auteurs de nombreux modules Perl.

Niveau : Intermédiaire / Avancé
Catégorie : Programmation

ISBN : 978-2-7440-4164-8Pearson Education France
47 bis rue des Vinaigriers
75010 Paris
Tél. : 01 72 74 90 00
Fax : 01 42 05 22 17
www.pearson.fr

	Perl moderne
	Les auteurs
	Avant-propos
	1 Démarrer avec Perl
	2 Installer un module Perl
	Partie I – Langage et structures de données
	3 Éléments du langage
	4 Structures de données
	5 Expressions régulières

	Partie II – Objet moderne
	6 Concepts objet en Perl
	7 Moose
	8 Le typage dans Moose
	9 Moose et les méthodes

	Partie III – Manipulation de données
	10 Fichiers et répertoires
	11 Bases de données SQL
	12 Abstraction du SQL, ORM et bases non-SQL
	13 Dates et heures

	Partie IV – Formats structurés
	14 XML
	15 Sérialisation de données
	16 Fichiers de configuration

	Partie V – Programmation événementielle
	17 Principes généraux de POE
	18 POE en pratique
	19 POE distribué

	Partie VI – Web
	20 Analyse de documents HTML
	21 HTTP et le Web
	22 LWP
	23 Navigation complexe
	24 WWW::Mechanize

	A Tableau récapitulatif des opérateurs
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

